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Summary 

 

This is a review of rigorous results obtained up to now in the theory of quantum chaos 

and also of the basic methods used thereby. This theory started from several conjectures 

about the way how the behavior of a quantum system is influenced by its classical limit 

being integrable or chaotic. Numerical calculations suggested that Wigner‟s statistical 

approach to the spectra of heavy nuclei via large random matrices seems to be 

applicable quite generally to quantum systems with chaotic classical limit.  

 

On the other hand, the construction of semiclassical solutions of the stationary 

Schrödinger equation for quantum systems with integrable classical limit, whose 

generic orbits cover invariant tori in phase space, lead to the expectation, that 

eigenstates of classically chaotic quantum systems should, like their generic classical 

orbits on the energy hypersurface, be equidistributed in configuration space.  

 

Even if progress in understanding general quantum systems rigorously is slow, there is a 

class of systems where important results have been obtained, namely those systems, 

which have nice arithmetic properties and are directly related to problems in number 

theory. For them the methods developed there can be applied. On the other hand, this 

connection influenced also research in number theory, as for instance on the statistical 
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properties of zeros of number theoretic functions like zeta or L -functions. This whole 

circle of problems is now combined under the name “arithmetic quantum chaos”, and 

the results there constitute the main body of this report. 

 

Since the whole theory is still in plain development with many open problems and 

therefore far from being a complete theory, this chapter tries only to review and 

describe the current situation and has certainly to be reworked in the future.  

 

1. Introduction 

 

1.1. Einstein’s Quantization Rules 

 

The origin of the theory of quantum chaos, which in the physics literature is sometimes 

also called „quantum chaology‟ (Berry, 1987), is a paper by Einstein (1917), which at 

his time did not find  much attention in the scientific community. In this paper he 

discussed the so called „old quantum mechanics‟ of Bohr, Sommerfeld and Epstein and 

their approach to pass from classical mechanics to the quantum spectrum of a 

Hamiltonian system with N  degrees of freedom and Hamilton function ( )H H x . He 

gave a coordinate independent formulation of Sommerfeld‟s quantization rules which 

are valid for general completely integrable systems and not only for the separable ones 

among them, which can be reduced to N  uncoupled systems with one degree of 

freedom. For such a completely integrable system with N  degrees of freedom 

Einstein‟s quantization conditions have the form  

  

,    ,   1 ,i i

i

pdq n h n i N



      (1) 

  

with h  Planck‟s constant. The i ‟s denote “closed curves in q -space to which all 

closed curves can be reduced by continuous deformations” to use Einstein‟s original 

formulation. In modern language, they are the N  cycles determining a basis of the 

fundamental group of an invariant N -torus N  in the phase space { ( )}x T M   , 

the cotangent bundle of configuration space M  of the completely integrable system. In 

local canonical coordinates the so called microstates x  are then given by 
2( , ) Nx q p  . The main remark Einstein's in (1917) however concerns the fact, that 

for systems not integrable, like for instance Poincarés 3-body system, this method does 

not work.  

 

Einstein therefore formulates the problem, how to determine the quantum spectrum of a 

system whose classical limit in the extreme case has no invariant tori at all and whose 

generic trajectory in phase space is dense on the entire energy shell 

{ ( ) }E x H x E     . This is the case for what one calls nowadays classically 

chaotic systems and whose time evolution H
t E E    on the energy hypersurface 

E  depends sensitively on initial conditions. This means, that the Hamiltonian flow 
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H
t  has at least one positive Liapunov exponent 

log(( ( ))
lim 0

)H
t x

t

D v

t





   for 

almost all Ex  with respect to the invariant measure on E  induced from Liouville 

measure L ( )d x dq dp  , and some tangent vector ( )x Ev T  . On the other hand, the 

time evolution of a quantum system with Hamilton operator 
2

2
ˆ ( )

m
V qH    , with 

  the Laplace operator in N , which is given by the unitary operator 

ˆ( ) exp ( )iU t H t  
 

 in a Hilbert space , cannot be chaotic in this sense for 0 , 

since it is in general quasiperiodic and hence does not depend sensitively on the initial 

state in . This already shows the singular character of the so called semiclassical limit 

0  of quantum physics which obviously is not a small perturbation of the limit 

0  of classical mechanics.  

 

1.2. The Berry-Tabor Conjecture on the Local Statistics of the Eigenvalues of 

Classically Integrable Systems 

 

Numerous numerical calculations have shown that in the semiclassical limit 0  one 

can find nevertheless typical fingerprints of its classical limit in the spectrum of a 

quantum system, which depend on this classical limit being integrable or chaotic. 

Already from Bohr‟s correspondence principle one expects physically, that a quantum 

system with Hamilton operator 
2

2
ˆ ( )

m
V qH     should behave more or less 

classically when Planck‟s constant  is “small”. A typical case for instance for this is 

the situation, when the system‟s de Broglie wavelength 
2 ( ( ))

h

m E V q



  is very small 

compared to the characteristic distance over which the potential V  varies appreciably, 

the so called short wave length respectively high frequency limit.  

 

Another example is the case of a free particle, moving in a bounded region like a 

billiard table, with Hamilton operator 
2

2
ˆ

m
H     with 

2 2
x y     the Euclidean 

Laplace operator with vanishing boundary conditions, where the semiclassical limit 

0  corresponds to the high energy behavior E   of the quantum system. 

 

The numerical investigations of different quantum systems resulted in a couple of 

conjectures both concerning properties of the eigenvalues ( )i  and the eigenstates 

( )i  of the Hamilton operator, given by ˆ ( ) ( ) ( )i i iH    , which indeed are the 

main focus of the research in quantum chaos over the last years: for the eigenvalues 

( )i  of a quantum system whose classical limit is completely integrable, Berry and 

Tabor (1977) formulated the conjecture, that generically the local statistics of its 

appropriately rescaled eigenvalues should be Poissonian in the semiclassical limit 

0 . This means for instance for the consecutive level spacing distribution 

1
1

1

ˆ ˆ( ) ( )
n

n i in
i

P s s  



    of the unfolded eigenvalues ˆ
i  with unit mean spacing 
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distance, that lim ( ) ( )n
n

P s P s


  should be given by ( ) sP s e , analogous to the waiting 

times between consecutive completely independent random events. 

 

1.3. The Bohigas, Giannoni and Schmit Conjecture for the Local Statistics of the 

Eigenvalues of Classically Chaotic Systems 

 

For quantum systems with chaotic classical limit on the other hand, Bohigas et al (1984) 

suggested in analogy to Wigner‟s approach to the spectra of heavy nuclei, whose 

classical dynamics is expected to be highly chaotic, that their rescaled spectra should 

follow in the semiclassical limit 0  the spectral statistics of the eigenvalues of 

certain Gaussian ensembles of large matrices depending on the systems invariance 

properties under time reversal ( respectively under space rotations for systems with half-

integer spins). The corresponding Gaussian measures have the form 
2ˆtrace

12
ˆ ˆ ˆ( ) exp( )H

N n f
v

d H C dH dH dH dH     , (where f  denotes the number of 

independent real variables of the matrix Ĥ ) and are supported on large real 

symmetric N N  matrices for systems invariant under time reversal respectively on 

large N N  Hermitian matrices for systems lacking time reversal invariance as for 

instance systems with magnetic fields. The measure ˆ( )Nd H  on symmetric matrices is 

obviously invariant under conjugation of Ĥ  by orthogonal matrices, hence its name 

Gaussian orthogonal ensemble (GOE), whereas the measure on the Hermitian matrices 

is invariant under conjugation by unitary matrices, hence its name Gaussian unitary 

ensemble (GUE). For the common distribution 1( )NP     of the eigenvalues i{ }  

one then finds 

2

241
1( )

N
i

vi
N N i j

i j

P C e




   

 
 
 

  




     


 where 1   for the GOE and 

2   for the GUE ensemble. From this one derives for large N  for the consecutive 

level spacing of the unfolded eigenvalues to a close approximation for the GOE 

ensemble the so called Wigner surmise 
2

2
( ) exp( 4)P s s s   , respectively for the 

GUE ensemble 
2 232

2
( ) exp( 4 )sP s s


  . Hence for chaotic systems consecutive levels 

of the quantum system should repel each other, whereas in the integrable limit case they 

should accumulate. For the level density  
 

2 2( ) ( )N N N NP d d       
 

 

 

      

 

one gets in the large N  limit independent from    

  

2 2

2

1 1
( ) (4 )

2
N Nv

Nv
  


   for | | 

2 2 Nv  

              0                                                for | |  
22   Nv . 
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For the distribution of the variable 
2

x
Nv


  hence one gets Wigner‟s semicircle law 

 

21
( ) 4

2
x x


   for  | | 2x   

 

         = 0                 for             | | 2x 
.
 

 

Rigorous results concerning these conjectures on the local spectral statistics of quantum 

systems in the semiclassical limit have been obtained up to now only for systems with 

nice arithmetic properties, to which methods from number theory can be applied. 

 

1.4. Berry’s Conjecture on the Equidistribution of Eigenfunctions for Classically 

Chaotic Systems 

 

Another characteristic of a quantum system where possible fingerprints of its classical 

behavior can be found, is the morphology of its bound states in the semiclassical limit, 

that means the eigenfunctions of its Schrödinger operator 
2

2
ˆ ( )H V x   , when  

tends to zero.  

 

1.4.1. Arnold’s Quasimodes 

 

The reason for such an expectation can be understood when looking at systems with 

completely integrable classical limit. One knows from semiclassical quantum 

mechanics, which started for systems with one degree of freedom with the so called 

JWKB approximation, named after the mathematician Jeffreys and the physicists 

Wentzel, Kramers and Brillouin, that one can use the invariant tori of these systems to 

construct the so called ”quasimodes” of Arnold (1972). In special cases these 

quasimodes turn out to be indeed approximate solutions of the stationary Schrödinger 

equation (Jakobson and Zelditch, 1999) with eigenvalues determined by Einstein‟s 

quantization conditions, which were later corrected by the above authors respectively 

Keller and especially Maslov. These corrected conditions can be shown to follow 

basically from single-valuedness of these quasimodes   which in local coordinates 

have the following form  

 

( ) ( )exp ( ) ,l l

l

i
q A q S q

 
  

 
  (2) 

 

with 

0

   ( )= ( )

q

l l

q

S q p q dq  , where ( )
l

p q  is a preimage of q  under the projection 

N N
N    

and the sum is over all these preimages. This can be applied for instance to a particle of 

mass 1m  moving in a potential ( )V V q  in 
N

 with completely integrable 
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Hamilton function 
2

2
( , ) ( )

p
H p q V q  , whose Hamilton operator 

2

2
ˆ ( )H V q    

defines a self-adjoint linear operator in the Hilbert space 2 ( )NL . It turns out that 

the amplitude ( )lA q  and therefore the function   has singularities at the so called 

caustic points, which are the images of the singular points of the projection N  (Berry, 

1983). For instance in the case 1N   and the Hamilton function 
2

2
( ) ( )

p

m
H q p V q    

one finds for the amplitude 
1
4( ) ( )A q E V q


   . To get solutions of the Schrödinger 

equation without singularities, according to Maslov‟s theory, which generalizes the so 

called connecting formulas of the JWKB solution in dimension 1N   at the classical 

turning points ( )E V q , one has to construct also analogous functions p  in 

momentum space p  or some mixed N -dimensional 
1 1

( )i i i il l N
q q p p


     - space, 

whose inverse Fourier transforms determine smooth functions at the caustics. Remains 

only to glue all these functions together at the caustics in the phase space 

(Lazutkin,1993). This gluing process and single valuedness lead finally to corrected 

quantization conditions of the form (Lazutkin,1993).  
  

( ) ,  ,  1
4

i
i i

i

m
pdq n h n i N



      , (3) 

 

where the integers im , the Maslov indices of the closed paths i , are determined by the 

way i  passes through the singular set of the projection map N N
N   . To get 

this way solutions of the Schrödinger equation at least up to order 2  the amplitude 

functions lA  have to fulfill so called transport equations, which determine them 

uniquely up to a multiplicative constant (Lazutkin,1993). Obviously these quantization 

conditions determine via the paths 1i i N     an invariant torus 
N
n  and hence also an 

energy value nE  of the classical Hamilton function H  with N n
n

H E


 . It is known, 

that these values are indeed approximate eigenvalues of the Schrödinger operator 

(Lazutkin, 1993), whereas in general only linear combinations of the above quasimodes 

 , constructed via the invariant tori, determine approximate eigenfunctions 

(Lazutkin,1993; Jakobson and Zelditch, 1999). According to the KAM Theorem of 

Kolmogorov, Arnold and Moser invariant tori exist also for weak perturbations of 

completely integrable systems, which can be used to determine this way at least part of 

the spectrum of the Schrödinger operator for such systems (Lazutkin,1993). By 

construction, the quasimodes “concentrate" in a certain sense to be explained later, 

around these invariant tori 
N
n  in the energy shell En

  of the classical phase space. 

 

1.4.2. The Weyl Quantization and Wigner’s Distribution 

 

In a classically chaotic system, as for instance an ergodic Hamiltonian system, on the 

other hand a generic orbit covers densely the whole energy shell E . This led Berry 
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(1983) to his general semiclassical eigenfunction hypothesis. To formulate this 

hypothesis, consider the phase space distribution ( , )W q p  introduced in 1932 by E. 

Wigner for any quantum state   in the Hilbert space 2 ( )NL  of a system with N  

degrees of freedom, and defined as  

 

1
( , ) exp ( ) ( ) ( )

2 2(2 )N
N

p x x x
W q p dx i q q  






           (4) 

 

Then, according to Berry‟s eigenfunction hypothesis, each semiclassical eigenstate   

for 0  should have a Wigner distribution ( , )W q p  which is concentrated on the 

region of phase space explored over infinite time by a typical orbit of the corresponding 

classical system, that means, on an invariant torus for a classically completely integrable 

system, respectively on the entire energy shell for a classically ergodic system. In the 

latter case, the Wigner distribution of a normalized eigenstate ( )q   then has the 

form  

 

( ( , ))
( , )

( ( , ))

E H q p
W q p

dqdp E H q p








 


 

 

Furthermore he suggested, that the individual semiclassical eigenstates   of classically 

ergodic systems should behave like Gaussian random fields, that means random 

functions of several variables, whose finite dimensional distributions  

 

1 1, , 11
( ) Prob{ ( ) ( ) }q q k kkk

q qF x x x x         

 

are multivariate Gaussian functions for all 
1 k

q q   and arbitrary k  (Berry, 1977). 

Such Gaussian random fields can be constructed for instance by superposing a large 

number of plane waves with uniformly distributed random phases. This random wave 

model has been checked experimentally for certain microwave resonators (Stöckmann, 

2006)  

 

Even if semiclassical quantum mechanics has a rigorous foundation in the theory of 

pseudo-differential operators and Fourier integral operators (Zworski, 2012), there are 

few rigorous results concerning the above formulated conjectures for general quantum 

systems with either completely integrable or chaotic classical limit. 

 

1.4.3. Trace Formulas 

 

There do not exist many methods which allow one to relate classical and quantum 

physics: one of them are trace formulae like Selberg‟s trace formula (Selberg, 1954) or 

Gutzwiller‟s semiclassical trace formula (Gutzwiller, 1991; Combescure et al, 1999), 

which connect the periodic orbits of a classical chaotic Hamiltonian flow with the trace 

of its Hamilton operator. To get the flavor of such trace formulas, consider a particle 
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moving freely on a compact surface M  of constant negative curvature, which we will 

discuss in more detail in Section 3.1. The corresponding chaotic Hamiltonian flow is the 

geodesic flow on this surface, whereas its Hamilton operator in units, where 
2

2
1

m
  , is 

the hyperbolic Laplace-Beltrami operator 2 2 2: ( )hyp x yy       . If 

0 1 20         denote its eigenvalues and l  is the length of a prime periodic 

orbit   of the flow, then the Selberg trace formula for this system has the following 

form (see for instance (Marklof, 2012)): 
  

0 1
2

( )Area( )
( ) ( ) tanh( )

4 2sinh( )
j nl

j n

l g nlM
h h d

 




    


 

 

     

 

Thereby 1
4j j    and h  denotes an even function on the complex z  plane analytic 

in the strip 1
2

Im z      , and decaying fast enough at infinity, so that the infinite 

sum over the eigenvalues converges, respectively g  denotes the Fourier transform of 

h . Obviously, it is not straightforward to extract from such a trace formula the local 

statistics of the eigenvalues or the morphology of the eigenfunctions. It is therefore not 

surprising, that most of the rigorous results in the theory of quantum chaos have been 

obtained by completely different methods, unknown before to the quantum physics 

community, which however can be applied only for a special class of systems. These are 

systems, whose classical phase space and dynamics have nice arithmetic properties and 

their behavior in the semiclassical limit is closely related to known problems in number 

theory. A typical example is the above mentioned geodesic flow on a surface of 

constant negative curvature and its quantization, the Laplace-Beltrami operator. Its 

spectrum is known to be directly related to the theory of automorphic and modular 

functions for the Fuchsian group defining the surface (Sarnak, 1997) and well studied in 

analytic and algebraic number theory. Such systems belong to a special branch of 

quantum chaos, so called arithmetic quantum chaos. Another class of systems also 

belonging to this branch, are quantized symplectic maps of symplectic manifolds like 

the so called cat map of the 2 -torus, which we will discuss later.  
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