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Summary 
 
This article explains how, by axiomatization, intuitive concepts of probability can be 
turned into a proper mathematical discipline. This is first discussed for probability 
experiments in which the list of possible outcomes, the so-called outcome space, is 
finite. As was pointed out in the early days of probability theory, arguments leaning on 
the assumption of equally probable outcomes can be very powerful in the analysis of 
such cases. Combinatorics, the art of sophisticated counting, thus enters the scene of 
probability in a natural way. Then, as a first step in generalizing the theory of finite 
probability experiments, it is explained how one can axiomatize experiments in which 
the list of all possible outcomes is countably infinite (which in mathematics is the 
lowest degree of infiniteness concerning the number of elements in a set). Finally, 
there is a discussion of what kind of problems mathematicians encounter in 
axiomatizing experiments in which the list of possible outcomes is uncountably 
infinite. 

1. Introduction 

Probability theory is the branch of mathematics dealing with experiments in which 
randomness plays a role: in other words, experiments in which it is impossible to 
determine the outcome of the experiment beforehand. In the following text, 
experiments of this kind will be called probability experiments. To arrive at some kind 
of a definition, one could say that a probability experiment is an experiment which, 
when repeated under exactly the same conditions, does not necessarily result in the 
same outcome. Standard examples of probability experiments are a toss of a coin or a 
throw of a dice. The list of all possible outcomes in a probability experiment is called 
the outcome space or sample space. This set is very often denoted by the Greek capital 
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Ω . The elements of Ω , that is to say the possible outcomes of the experiment, are 
then usually denoted by ω  or by 1 2 3, , , ...ω ω ω  if more than one outcome is to be 
dealt with. In the context of probability the subsets of Ω  are looked upon as being 
events. This should be read as follows: if E is a subset of Ω  then it is said that the 
event E occurs if the outcome ω  of the experiment happens to be an element of E. So, 
briefly, the event E occurs if Eω∈ . By thus defining the concept of an event, 
probability theory is connecting itself directly to mathematical set theory. 
 
Example 1: In a game of chance a dice is cast and the number of spots observed. Of 
course this is a probability experiment: when repeating the experiment, the observed 
number of spots is not necessarily the same. The possible outcomes are here: 
 

1, 2, 3, 4, 5, 6ω ω ω ω ω ω= = = = = = . 
Grouping these outcomes together in a set gives the outcome space Ω  of the 
experiment: 
 

: {1, 2, 3, 4, 5, 6}Ω = . 
An example of a subset of Ω  is the set : {2, 4, 6}E = . The corresponding event 
occurs if the outcome is 2, 4, or 6. Hence the subset E stands for the event that the 
outcome of the experiment is an even number of spots. 
 
Given some subset E of Ω  one can consider the complement of E relative to Ω , 
denoted by cE . The subset cE  then corresponds to the event that E does not occur, 
that is, that the outcome of the experiment is not an element of E. When two subsets E 
and F of Ω  are given, then one can form new subsets by taking for example their 
union E F∪  or their intersection E F∩ . The union E F∪  stands for the event 
that E or F occurs, where the conjunction ‘or’ is used in the non-exclusive way. The 
event E F∩  stands for the event that E and F occur simultaneously. If E and F have 
an empty intersection, briefly if E F =∅∩ , then the sets E and F are said to be 
disjoint. It is then impossible for the corresponding events to occur simultaneously. 
For that reason disjointness of E and F is in probabilistic language often expressed by 
saying that the events E and F mutually exclude each other. 
 
Example 2: Throwing a dice twice the possible outcomes of the experiment can be 
captured by ordered pairs ( , ),i j  where an outcome ( , )i j  stands for the event that the 
first throw shows i  and the second j spots. According to this notation the outcome 
space Ω  can be described as: : {( , ) | , 1, 2, 3, 4, 5, 6}i j i jΩ = = . The subset 

: {(4,6), (6,4), (5,5), (5,6), (6,5), (6,6)}E =  thus corresponds to the event that 

the total number of thrown spots is 10 or more. Hence the complement cE of E stands 
for the event that the total number of spots is (strictly) less than 10. Let F  be the 
event that the first throw shows six spots, with no specification on the second throw. 
Then F can be presented as a subset of Ω  by setting 

: {(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}F = . The union E F∪  is now given by: 
{(4,6), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)}E F =∪ . 
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It presents the event that the first throw shows six spots or that the total number of 
spots thrown is 10 or more. The intersection E F∩  is here given by: 
 

{(6,4), (6,5), (6,6)}E F =∩ . 
This subset represents the event that the first throw shows six spots and that the second 
throw is such that it makes the total number of spots equal to 10 or more. 
 
Given some probability experiment with outcome space Ω , let E be some fixed subset 
of Ω . Repeating the experiment N times under exactly the same conditions, one could 
count the number of times that event E occurs: 
 

( ) : number of times that occurred after trialsN E E N= . (1) 
 
Of course one always has 
( )N E N≤   (2) 

 
The very trivial event E = Ω  occurs in all of the trials and therefore 
( )N NΩ =   (3) 

 
Moreover, as can easily be verified, one has 
( ) ( ) ( )N E F N E N F= +∪    if E F =∅∩   (4) 

 
The rate at which the event E occurs when repeating unendingly can be expressed by 
the ratio ( )N E N , thereby taking N very large. This ratio is understood to be the 
probability that event E occurs and denoted by P (E ). More precisely, the probability 
that the event E occurs could be thought to be ‘defined’ as 

( ) ( ): lim
N

N E
E

N→
=

∞
P   (5) 

 
If, for example, one has P (E ) = 0.40 then, when repeating unendingly, the event E 
can be expected to occur in 40 percent of the repetitions. 
 
Starting from the provisory definition given in (5), the next three properties can 
directly be distilled from (2), (3) and (4). 

( )0 1E≤ ≤P   (6) 

( ) 1Ω =P   (7) 

( ) ( ) ( )E F E F= +∪P P P    if E F =∅∩   (8) 
 
From the mathematical point of view, however, the way of defining P  by means of 
(5) is quite unsatisfactory, there being no guarantee at all that the limit on the right 
side of (5) actually exists. It is not possible to deduce this from the given setup. In 
early days of mathematics, the Greek mathematician Euclid faced similar problems in 
his efforts to set up geometry as a deductive science. For example, Euclid found 
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himself unable to prove that, given a straight line and a point (not necessarily on the 
line), there is exactly one straight line through this point that is parallel to the given 
straight line. To get around this kind of problems, Euclid defined straight lines as 
objects having some basic properties. These basic properties were called axioms. All 
other properties were thereupon to be deduced by logical reasoning from the given 
axioms. Thus geometry was born as a deductive science. In very much the same way, 
mathematicians have been axiomatizing the concept of probability. In the heuristic 
setup given above it is clear that, in defining the concept of probability, there must be 
some mechanism that assigns to every subset E ⊂Ω  a number P (E) between zero 
and one, representing the chance that event E will occur. Denoting the collection of all 
subsets of Ω  by P ( Ω ) one could express this more precisely as follows: in 
axiomatizing the concept of probability along the heuristic lines given previously, 
there must be some function of the form 
P : ( )Ω →P [0,1]  (9) 
 
That is to say, a function 

( )E EP  (10) 
 
where P (E) is always a number between zero and one. This function should have 
certain properties. The heuristic setup given before suggests that it should at least have 
the properties (6), (7) and (8). Mathematicians have thus been trying to capture the 
concept of a probability experiment in the following abstract way. 
 
Definition 1: A probability experiment or a probability space is a pair ( ,Ω P ) where 
Ω  is some set and where P : ( )ΩP → [0,1] is a function with the properties  

(a) ( ) 1Ω =P . 

(a) (b)  ( ) ( ) ( )E F E F∪ = +P P P    if E F∩ =∅ . 
 
Functions defined on P (Ω ) are usually called set functions. Property (a) is often 
referred to by saying that the set function P  is normalized. Property (b) is usually 
expressed by saying that P  is an additive set function. Definition 1, as will be 
explained in the sections that follow, is not quite satisfactory in many cases. However, 
in cases where Ω  is a finite set there are no problems at all. It should be noted that 
from Definition 1 a number of very useful properties can be deduced. First of all the 
trivial property that 
( ) 0∅ =P . (11) 

 
Moreover, the rule for taking complements can be deduced: 

( ) ( )1cE E= −P P  (12) 

 
It can also be deduced from Definition 1 that 
( ) ( )E F≤P P    if E F⊂ . (13) 
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For every two subset E  and F , not necessarily disjoint, one has 
( ) ( ) ( ) ( )E F E F E F∪ = + − ∩P P P P . (14) 

 
It follows from this that 
( ) ( ) ( )E F E F∪ ≤ +P P P    for every pair of subsets E  and F. (15) 

 
By recurrence one can prove that for every finite sequence of mutually disjoint subsets 

1 2, , ... , nE E E  one has 

( ) ( ) ( ) ( )1 2 1 2n nE E E E E E∪ ∪ ⋅⋅ ⋅ ∪ = + + ⋅ ⋅ ⋅ +P P P P . (16) 
 
When the 1 2, , ... , nE E E  are not necessarily disjoint, then 

( ) ( ) ( ) ( )1 2 1 2n nE E E E E E∪ ∪ ⋅⋅ ⋅ ∪ ≤ + + ⋅ ⋅ ⋅ +P P P P   (17) 
 
which generalizes (15). For n arbitrary subsets 1 2, , ... , nE E E  formula (14) can be 
generalized to 

( ) ( ) ( )

( )

( ) ( )

1 2

1
1 21 .

n i i j
i i j

i j k
i j k

n
n

E E E E E E

E E E

E E E

<

< <

−

∪ ∪ ⋅⋅ ⋅ ∪ = − ∩ +

∩ ∩ − ⋅⋅ ⋅

⋅ ⋅ ⋅ + − ∩ ∩ ⋅⋅ ⋅ ∩

∑ ∑

∑

P P P

P

P

 (18) 

 
All these very basic laws of probability can be deduced from Definition 1. 
 
- 
- 
- 
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