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Summary 
 
The motion of a particle in a liquid can be described by a stochastic differential equation. 
The most important question is the existence and unicity of the solution of such an 
equation. 

1. Existence and Unicity 

The process X(t) defined in the article Stochastic Calculus describes the motion of a 
particle when there is no macroscopic velocity of the liquid in which the particle moves. 
Now we consider the situation when the liquid is not homogeneous and not motionless. 
 
Let m(x,t) be the macroscopic velocity of a small volume V of a liquid located at xR1 at 
time t. Now the motion of a particle in a time-interval (t,t + dt) arises from two sources: 
the macroscopic motion of the liquid which is m(X(t),t)dt (where X(t) is the location of 
the underlying particle at time (t) and the microscopic influence of the liquid which is: 
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Hence we get the “stochastic differential equation”: 
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Since W′(t) does not exist, precisely speaking the above equation is meaningless.  
 
Therefore instead of it we consider the integral equation: 
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Now we say that the motion of a particle is described by a stochastic process X(t) which 
satisfies the above integral equation and an initial condition X(a) = X where X is a 
random variable independent from {W(t), a ≤ t ≤ b}. Clearly we have to give conditions 
that imply the existence and uniqueness of such a process. In fact we assume that the 
functions m and σ are regular enough. Namely: 
 
The functions m and σ are Borel measurables that satisfy (for some k > 0) the Lipschitz 
condition 
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for all x,y,t. We also assume that: 
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Assuming the above conditions we have the following: 
 
Theorem: The integral equation (1) has one and only one solution X(t) which satisfies 
the initial condition X(a) = X. We also have: 
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X(t) is continuous on [a,b] with probability one and {X(t), a ≤ t ≤ b} is a Markov 
process. 
 
We note that the proof of this theorem is based on a successive approximation 
procedure. In fact let 
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Then we have to prove that the above defined sequence {Xn(t)} converges a.s. (as n → 
∝) to a stochastic process that is a solution of the underlying stochastic differential 
equation and that satisfies the other statements of the above theorem as well. 
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