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Summary 
 
Stationary processes are stochastic processes whose probabilistic structure is unaffected 
by shifts in time. According to the interpretation of the term “probabilistic structure”, 
one distinguishes weak sense stationary processes, where only the covariance structure 
is supposed to be invariant, and strict sense stationary processes, for which all finite-
dimensional distributions have to remain the same under shifts of time. Some important 
basic properties are discussed, and the spectral representation of a stationary process 
and its relation to questions of linear prediction are studied. 

1. Introduction  

Stationary processes are defined by the property that their behavior is not affected by a 
shift of the time variable. Depending on how one chooses to interpret the word 
“behavior” above, one arrives at one of the following definitions: 
 
1. A stochastic process ( ),tξ Τ( )t ∈  (see Stochastic Processes and Random Fields) 

with T =  or T =  is called stationary in the weak sense, or in short “weakly 
stationary”, if the expectation ( )E ξ ( )t2  is finite for all t , and if  

           
     ( )( ) ,m=E ξ t   (1) 
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        and  
   
    ( )( ) ( ) ( )( ) ( ), ,R t s= = −Cov Covξ ξ ξ ξ( ), +s t s h t h+  (2) 

i.e., if the expectation of ξ( )t is constant and the covariance of ξ( )s and  ξ( )t depends 
only on  
   t – s.  
   
2. A stochastic process is ξ( )t  is called stationary in the strict sense, if the distribution 

of  
             
      ( ) ( ) ( ), ,...,ξ ξ ξ1 2 nt t t   (3) 
 
     is the same as that of  
   
    ( ) ( ) ( ), ,....,h h h+ + +ξ ξ ξ1 2 nt t t   (4) 
 
     for any choice of ,...,1 nt t  and h. 
 
It is clear that any strictly stationary stochastic process with finite variances is also 
weakly stationary, but the definition of a strict sense stationary process does not include 
the finiteness of the variance, not even the finiteness of the expectation. The 
function ( ) ( )( ) ( , )R t =Cov ξ ξs s t+ is called the correlation function of the 

processξ( )t . Furthermore, in most cases, the value of m =  ( )E ξ( )t  does not matter, so 
one can assume without loss of generality that m = 0.  
 
Consider a few simple examples: 
 
1. The simplest possible (and the least interesting) example is a constant process: 

ξ( )t = ξ(0) . 
 
2. Almost as simple as the first example: A sequence of independent identically 

distributed random variables...,ξ ξ ξ(-1), (0), (1),.... . Here the correlation function 

is (0) , ( ) 0R R t= =σ2  for 0t ≠ . 
 
3. A little more sophisticated is the following example: Let ( ),η n n ∈  be a 

sequence of independent identically distributed random variables and , 0,...,ia i k=  
some real constants. Then    

 ( )
0

k

i
i

a
=

= ∑ξ η( )t t - i   (5) 

is a stationary process, the so-called moving average (MA) process. 
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4. One can reverse the roles of ξ and η in the last example; this gives rise to the 
following   definition : 

A stationary sequenceξ( )t  is called an autoregressive (AR) process if there are 
constants 0,..., mb b  such that  
  

     ( ) ( )
0

m

j
j

b
=

= ∑η ξt t - j             (6) 

      
is a sequence of uncorrelated random variables. 
 
5. Combining the last two examples, one gets the so-called autoregressive moving 

average (ARMA) process. This is a sequence ξ( )t  such that  
   

      ( ) ( )
0 0

,
m n

j i
j i

b a
= =

=∑ ∑ξ ηt - j t - i   (7) 

     
where ( )η t  is again a sequence of uncorrelated variables. 
 
In this and the preceding example, there is the question of whether an AR (or    
ARMA) process exists for a given sequence 0,..., mb b . For example, if    

0 11, 1,b b= = −  then there exists no stationary solution of the autoregressive equation; 

it implies that 0 ,j=∑ξ ξ η1( )= ( )+ k-
t- jt t - k  which contradicts the assumption  that 

ξ( )t  has finite variance. 
    
A more detailed analysis (the discussion of spectral densities later in this chapter can be 
used to    prove this) shows that the AR equation has a stationary solution only if the 
polynomial with coefficients  0,..., mb b  doesn’t have roots on the unit circle (i.e., if    

0ib ≠∑ iz     for all complex z  with 1=z ) 
 
6. Let A and η be two random variables with arbitrary joint distribution on 

[ ) [ )0, 0,×∞ ∞ and assume that φ is another random variable, independent of A 

and  η , and uniformly distributed on.[ ], π0 2 . Then  
  
      ( ) ( )cosA=ξ η φ+t t   (8) 
      
is a stationary process (this follows from the fact that η φ+h  modulo 2π  is again 

uniformly      distributed on[ ], π0 2  and independent of A and η . The correlation 
function of this process (if A     has finite variance) is readily calculated as  
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( ) ( ) ( )( )

( )( ) ( )( )

2

2 2

cos cos

cos cos .

R A

A A

=

= +

E

E E

η φ φ

η η φ

+

+2

t t

t t
 (9) 

    
The second expectation is zero because the argument of the cosine is again uniformly 
distributed      modulo 2π  and independent of A. A simple transformation of the first 
expectation yields 
   

      ( ) ( )( ) ,R t = ∫ μc s yt dy
∞

0
ο   (10) 

 
Where μ  is a finite measure on [ )0,∞  defined by 
        

      ( ) ( )( )21 .
2 BA I= Eμ Β η   (11) 

 
Letting [ ) [ )1

2( ) ( )v B = μ μ( 0, )+ ((- ) 0, )B B∩ ∞ ∩ ∞ , this becomes 
        

     ( ) ( ).R v d= ∫ iytt e y
∞

−∞
  (12) 

 
This way, one can get a correlation function of the form (??) with any finite symmetric 
measure v. In order to get the same form with a general, not necessarily symmetric 
measure v, it is sufficient to consider ξ η φ( )= exp( ( )),t A i t+   letting η take 
negative as well as positive values. 
 
7.  If ξ( )t is a Gaussian process (i.e., all finite–dimensional distributions are 

multivariate   Gaussian), then weak and strict stationarity are equivalent. 
 
A particularly interesting example is obtained by letting 
   

       ( )2 ,
t tW e−ξ( )=t e   (13) 

 
where W is a Wiener process, i.e., Gaussian process with mean zero and covariance 
function    
 
      ( , ) min( , ).R s t s t=  
 
The correlation function of this process is  
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( ) ( ) ( )( )

( ) ( )( )(2 ) / 2 / 2s t s s t t

R t

e W e W e e− + + −

=

= =

E

E

ξ ξs s t+
 (14) 

 

 If 0≥t , and for general / 2, ( ) tR e−=t t . This is a Gaussian stationary Markov 
process (the  Markov property follows from the fact that the Wiener process is Markov), 
and is called the Ornstein-Uhlenbeck process (see Markov Processes). 

2. Spaces and Operators related to stationary processes 

2.1 Spaces of square-integrable functions 
 
This section introduces a number of spaces of functions and random variables that play 
an important role in the investigation of stationary processes. 
 
First observe that the definition of a weak sense stationary process only involves the 
first two moments of the distributionξ( )t ; this makes it desirable to have a notion of 
convergence that can be expressed in terms of the first two moments. This is given by 
convergence in mean square. A sequence of  ξ( )n  of random variables converges in 
mean square to a random variable ξ  if    
 

( )( )2 0.− →E ξ η ξ   (15) 

 

If one identifies random variables that are almost surely equal, then 2 ( )= Eξ ξ2  is 
a norm on the space of all (equivalence classes of) random variables with finite 
variance. Denote this space by ( )2 2=L L FΩ, ,P , indicating the underlying 

probability space to avoid ambiguities. On this space, 2.  is not only a norm, but it is 

also complete (i.e., any Cauchy sequence with respect to 2.   has a limit). In addition, 

this norm is generated by the inner product ( )E ξη  (or ( )E ξη  if one considers 
complex-valued random variables), so 2L  is a Hilbert space. Convergence with respect 

to the norm 2.  is of course equivalent to convergence in mean square. 
 
In the sequel, various subspaces of 2L  will be needed. These are usually the spaces 
generated by certain sets of random variables. The most important case is the one where 
a process ξ( )t ,t Τ∈  is given and one considers all random variables that can be 
defined in terms of the values of ξ( )t  for t in some subset S and T; thus, let 

2 ( )L ξ(.),S denoted the space of all random variables with finite variance that are 
measurable with respect to the σ - algebra SF  generated by the random variables 
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ξ( ),t t S∈ . Another way of defining this subspace is as the closure of the set of all 
n 2∈L  that can be expressed in the form η ξ ξ( ,..., )nf 1=  with some measurable 
function (.).f  
 
A similar notation will be used for spaces of measurable functions on the real line. If a 
Lebesgue Stieltjes measures on the real line is given by its cumulative distribution 
function F, then 2L (dF) is used to denote the space of all measurable functions that are 
square integrable with respect to dF (and identifying functions that agree almost 

everywhere with (dF)), endowed with the norm ( )
1

22
2 .f f dF= ∫  

 
For a weak sense stationary processξ( )t , t T∈  the space 2( )L ξ(.),T is still too rich; 
in particular, many of the random variables in this space have means and variances that 
cannot be expressed in terms of the mean and covariance function ofξ(.) . A random 
variable for which this can be achieved is that of a linear combination 
   

( ) ( )... ,c+ + +ξ ξ1 n nt t1λ λ   (16) 
 
where ,... n1λ λ   and c are real numbers and 1,..., nt t T∈ . Of course, for limits (in 
square mean) of variables of the above form, their mean and variance can also be 
expressed in terms of the mean and covariance function of ξ(.) . So, for S T⊂ , let 

SH  denote  the closure in 2L of the set of all random variables of the form (??) 

with 1,..., nt t S∈ ; the subspace 0
SH is obtained by imposing the additional condition c 

= 0 in (??). 
 
2.2. Shift operators 
 
These operators, which will be denoted by θh , are models for a “ shift in time”, i.e., 
they map the trajectory ξ( )t into θ ξ ξ( )= ( + ).h t t h  
 
This type of operators can be defined for any (not necessarily stationary) stochastic 
process if one assumes that for anyω∈Ω  there exists a ωh ∈Ω  such 
thatξ ω ξ ω( )= ( + ).ht, t h,  This, however, will not be followed further, in particular 
because there are subtle problems about measurability- in particular, the action of θh  on 
spaces like 2L ξ( (.), )S  or SH  may not be well defined, because the images of 
equivalent random variables need not be equivalent again. 
 
For strict sense stationary processes, there is a simpler way to obtain the shift operators; 
namely, if η ξ( (.), )T2∈L  can be expressed in the formη= ξ ξ1( ( ),..., ( )),nf t t  then 
let  
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θ η ξ ξ1( ( + ),..., ( + )).h nf t h t h=   (17) 
 
This is an isometric mapping into 2L ,since it is obvious that E θ η η( )= ( ).h

2 2E  This 

implies in particular that the definition ofθh is correct for η of the above form (i.e., for 

two different representations of η , the corresponding expressions for θ ηh  agree with 
probability one), and then the θh  can be continuously (and isometrically) extended to 

the set of all limits in square mean of random variables  η of the above form. 
 
For weak sense stationary processes the above construction is not available for all 
of 2L , but it works on the space TH . Clearly, for a linear combination 
   

( ) ( )... ,c+ + +η ξ ξ1 n nt t1= λ λ   (18) 
 
one lets 
   

( ) ( )... .h h c+ + + + +θ η ξ ξ1h n nt t1= λ λ   (19) 
 
Again, this is an isometric mapping, so it can be extended to all of TH  

3. The Correlation function 

The correlation function determines a number of properties of a stationary processξ( )t . 
Questions of continuity and differentiability, for instance, can be answered, if one 
defines them using convergence in square mean. In particular, one has the following 
theorem. 
 
Theorem 1: A weak sense stationary processξ(.)  is continuous in square mean if and 
only if its correlation function (.)R  is continuous, which is in turn equivalent to (.)R  
being continuous at 0. 
  
ξ(.) is differentiable in square mean if R(.) is twice continuously differentiable; the 

correlation function of ′ξ (.)  is ′′−( )= ( ).R t R t  
 
The first assertion is very simple to prove. Assume without loss of generality 
thatE ξ( ( ))= 0t . ThenE ξ ξ 2(( ( + ) - ( )) )=2( (0) - ( )),s t s R R t so the continuity of 
(.)R at zero implies the continuity (even the uniform continuity) of ξ(.)  in square 

mean. On the other hand, from the continuity of ξ(.)  one finds that (.)R  is continuous 
by applying Cauchy’s inequality: 
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( ) ( ) ( ) ( ) ( )( )( )( )
( )( ) ( ) ( )( )( )

22

22

t h t+ − = −

≤ −

E

E E

ξ ξ ξ

ξ ξ ξ

+

+

R R t h t

t h t

0

0
    (20) 

 
The proof of the second assertion proceeds in a similar manner with just a little more 
complexity and will be omitted. 
 
One has to keep in mind that continuity in square mean has nothing to do with pathwise 
continuity; a stationary Markov chain ( in continuous time of course) with finitely many 
states, for example, is continuous in square mean, but its trajectories obviously are far 
from being continuous. 
 
Another important property of the correlation function is that it is positive definite: for 
any complex ,....,1 kz z and 1,...,t t Τk ∈ , one has  
   

( ) 0.i jt t− ≥∑ ∑
k k

i j
i=1 j=1

z z R   (21) 

 
For positive definite functions, the following characterizations are available: 
 
Theorem 2:  The sequence ( ), 1,0,1,....n n = −R  is positive definite if and only if it can 
be written as  
   

( ) ( ),n dv= ∫
π λ
−π

λinR e   (22) 

 
where v is a (unique) finite measure on[ ].−π,π  
 
Theorem 3: (Bochner-Khinchine) A continuous function ( ),R t t ∈  is a positive 
definite if and only if it admits the representation 
   

( ) ( ),dv= ∫ i tR t e
∞ λ
−∞

λ   (23) 

  
where v is a uniquely determined finite measure on the real line. 
 
The function ( ]( ) ( )F v= −x x∞, is called the spectral function. If F is absolutely 
continuous with derivative f, then f is called the spectral density of F. 
 
The spectral function F can be interpreted as a cumulative distribution function 
describing the energy distribution of a random oscillation; the spectral density is the 
density of this energy distribution. 
- 
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