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Summary 
 
Many phenomena in continuous media, e.g., in geophysical problems, can be interpreted 
as a sequence of realizations of random (stochastic) fields (scalar or vector-valued). 
Often the field can be reduced to ones that are invariant with respect to a Lie group’s 
action. Correlation function (or the same - spectral density) of such field is its important 
characteristic. It can be used for interpolation of realizations of the field. Correlation 
functions must be semi-positive definite, however, in the process of its estimation the 
property may be lost. A regularization of such estimation (small perturbation that 
provides the positive definiteness) as well as meteorological applications is considered. 

1. Introduction 

The representation of spatial fields (scalar or vector-valued), that are time dependent as 
realizations of a random field can be useful for various applications. It means an 
exchange (The exchange can be interpreted also as so-called “ergodic hypothesis”.) of 
averages with respect to time (sometimes with respect to spatial variables, too) on the 
average with respect to a “random argument”ω . The representation describes our 
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informal knowledge about mean values, variances, and the connection between values 
of the field in different spatial points. The connection can be described by the 
correlation function (CF) of the random field. Certainly, the description cannot be full; 
it is a suitable compromise between a desirable statistical description of a physical field 
and our measurement and computational possibilities. 
 
CF’s evaluation will be considered below for meteorological fields for Earth’s 
troposphere and lower stratosphere. The methods that are used for the concrete 
evaluation problem can be considered as typical for various geophysical applications. 
 
The typical horizontal scale for the problem is about 102 km as well as the vertical scale 
is about 1 km. The scales are the result of a compromise between 
 

i. an understandable desire to know a “best” evaluation of CF; 
ii. ii)    the precision of CF, that is necessary for next applications, is not unlimited 

(the level “several   %” is sufficient); 
iii. homogeneity and isotropy of the large-scale random fields can be fulfilled along 

the horizontal arguments, only; 
iv. a difference between the “true CF” and its best approximation under the 

homogeneity and isotropy hypotheses is not vanishing – there is a lot of extra-
atmospheric phenomena with anisotropic influence on the Earth’s atmosphere; 

v. an available archive of the measurement data include errors and cannot be full. 
 
Otherwise, to evaluate the CF, one can use a property of CF: it must be semi-positive 
definite. It gives a way to regularize the ill-posed computational problem of CF’s 
evaluation. 
 
- 
- 
- 
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