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Summary 
 
The estimation of the parameters of a statistical model is one of the fundamental issues 
in statistics. Choosing an appropriate estimator, that is ‘best’ in one or another respect, 
is an important task, hence firstly several optimally criterions are considered. In 
practice, however, constructive methods of parameter estimation are needed. Some of 
the methods most frequently used are considered, the method of moments, linear 
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estimation methods, and the most important one, the method of maximum likelihood in 
some detail. At last, the closely related problem of interval estimation is considered. 

1. Fundamental Concepts 

1.1. Parameter and Estimator  
 
All estimation procedures are based on a random sample, 1, , nX X…  from a random 

variable .X  Let ( )f x θ  denote the probability mass function (pmf), if  X is a 
discrete, or the probability density function  (pdf), if X is a continuous variable, where 
the form of the pmf or pdf is known, but the parameter vector (parameter for short) 

( , , )= …1θ θ θk  is unknown. We call the set of possible values for the parameter θ  the 

parameter space Θ , being a subset of .\k  
 
Remark: As there are formally only slight (and quite obvious) differences between the 
discrete and the continuous cases, we focus on the latter for simplicity. 
 
Let 1( , , )nT x x…  be a real-valued or vector-valued function whose domain includes 
the sample space χ  of 1( , , )nX X=X … . (Compare Statistical Inference.) Then the 
random variable 1( , , )nT X X… is called a statistic, and its distribution is called the 
sampling distribution of T. Note that the value of a statistic can be computed from the 
sample alone and does not depend on any (unknown) parameters. The sample mean X  
and the sample variance 2S   
 

2 2

1 1

1 1, ( )
1

n n

i i
i i

X X S X X
n n= =

= = −
−

∑ ∑ ,  (1) 

 
are well known examples of statistics. Our objective is to find statistics which will serve 
as estimators for the unknown parameter θ , or more generally for certain functions 

( )τ θ  of the parameters. Thus a very broad definition of an ‘estimator’ is the following. 
 
Definition: Any statistic 1( , , )nT X X…  (from χ to ( )τ Θ ) is called an estimator of 

( )τ θ . When the actual sample values are implemented into T ,an estimate t of 
( )τ θ results. 

 
1.2. Mean Squared Error 
 
There are various suggestions for a measure of ‘closeness’ of an estimator to the 
objective parameter function ( )τ θ . For instance, one could consider the probability 
that the estimator T is close to ( )τ θ , 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PROBABILITY AND STATISTICS – Vol. II - Statistical Parameter Estimation - Werner Gurker and Reinhard Viertl 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

{ }1 for( , , ) ( )nP T X X ε ε−…θ τ θ < >0  (2) 
 
or we could consider an average measure of closeness like the mean absolute deviation, 
 

1MAD ( ) ( , , ) ( ) .T nE T X X⎡ ⎤= −⎣ ⎦…θθ τ θ     (3) 
 
What is mathematically more convenient is to consider an average squared deviation, 
the mean squared error (MSE), 
 

( )21MSE ( ) ( , , ) ( ) .T nE T X X⎡ ⎤= −
⎣ ⎦

…θθ τ θ     (4) 

 
The MSE summarizes two properties of an estimator, its ‘precision’ and its ‘accuracy’, 
two important concepts in practical applications. By some simple transformations the 
MSE of an estimator T can be written as follows, 
 

( ) ( ) 2MSE ( ) Var ( ) ( ) ( )T T E T= + −⎡ ⎤⎣ ⎦X Xθθ τ θ ,   (5) 
 
where Var( ( ))T X  denotes the variance of ( )T X . The standard deviation, Var( )T , 
is a measure of the precision of an estimator (the smaller the variance, the greater the 
precision), that is a measure of its performance; the square root of the second term, 

( ) ( ( ))E T− Xθτ θ  (not to be confused with the MAD), is a measure of how accurate 
the estimator is, that is how large on the average the error systematically introduced by 
using T is.  
 
Though not stated explicitly, associated with all these measures is a certain concept of 
‘loss’; the MSE, for instance, penalizes the deviations of an estimator from its objective 
function quadratically. 
 
1.3. Loss and Risk 
 
The estimation of a parameter θ  can be regarded as some kind of a decision problem, 
that is to say, by using the estimator T we decide, given a specific sample 

1( , , ),nx x=x …  on a specific value θ̂  for the unknown parameter, ˆ ( ).T= xθ  Clearly, 

θ̂  will generally be different from the true parameter value θ  (and if not, we would not 
be aware of it). 
 
 
Being involved in decision making in the presence of uncertainty, a certain kind of loss, 
( )( ) ,L Τ xθ,  will be incurred, meaning the ‘loss’ incurred, when the actual ‘state of 

nature’ is θ, but ( )T x  is taken as the estimate of θ . Frequently it will be difficult to 
determine the actual loss function L over a whole region of interest (there are some 
rational procedures, however), so it is customary to analyse the decision problem using 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PROBABILITY AND STATISTICS – Vol. II - Statistical Parameter Estimation - Werner Gurker and Reinhard Viertl 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

some ‘standard’ loss functions. Especially for estimation problems usually two loss 
functions are considered, the squared error loss and the linear loss. 
 
The squared error loss is defined as (with Q  a k k×  known positive definite matrix) 
 

( ) ( ) ( ) , .T kL = − − ∈a a Q a a \θ, θ θ      (6) 
 
In case of a one-dimensional parameter, the loss function reduces to  
 

2( ) ( ) .L a c a= −θ, θ        (7) 
 
Frequently it will not be unreasonable to assume that the loss function is approximately 
linear (at least piecewise); for a one-dimensional parameter the linear loss can be 
written as ( 0K  and 1K  are two known constants) 
 

0( ) if
( )

( ) if
K a a

L a
a a
− ≤⎧

= ⎨ −⎩ 1

θ θ
θ,

Κ θ θ>
     (8) 

 
If one regards over– and underestimation as being of equal (relative) importance, the 
loss function reduces to  
 

( )L a c a= −θ, θ         (9) 
 
Because the true ‘state of nature’ is not known (otherwise no decision would be 
required) the actual loss incurred will be unknown too. The usual way to handle this 
problem is to consider the ‘average’ or ‘expected’ loss incurred. Averaging over X  
alone leads to the classical (frequentist) notion of a ‘risk’ associated with a decision 
rule. 
 
Definition: The risk function for the estimator T is defined as the expected value of the 
loss function, 
 

[ ]( ) ( ( )) ( ( )) ( ) .R E L L f d= = ∫X x x xθ, Τ θ, Τ θ, Τ θ
X

 (10) 

 
The expectation is to be understood with respect to the distribution of 

1( , , ).nX X=X …  
 
Note that the mean squared error of an estimator, MSE ( ),T θ  is the risk of the 
estimator with regard to a quadratic loss function. 
 
Averaging over both, X  and θ, leads to the Bayes risk. This approach requires the 
existence of a prior distribution for the parameter θ. 
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Definition: The Bayes risk for the estimator ,T  with respect to the prior distribution 
π over the parameter space Θ , is defined as 
 

[ ]( ) ( ) ( ) ( )r E R R d= = ∫π, Τ θ, Τ θ, Τ π θ θ
Θ

    (11) 

 
The expectation is to be understood with respect to the prior distributionπ . Note that 
the Bayes risk is a number, not a function of θ . (Compare Bayesian Statistics.) 
 
1.4. Sufficient Statistic 
 
It is quite obvious that for an efficient estimation of a parameter or a function of a 
parameter rarely all the single sample values, 1, , ,nX X…  have to be known, but that a 
few summarizing statistics (like the sample mean or the sample variance) will suffice, 
depending on the problem at hand. This intuitive concept can be formalized as follows. 
 
Definition: A statistic 1( , , )nS X X…  is called a sufficient statistic for a parameter θ  if 
the conditional distribution of 1( , , )nX X…  given S s=  does not depend on θ  (for 
any value of s ). S  can also be a vector of statistics, 

( )1 1 1( , , ), , ( , , ) .n k nS S X X S X X= … … …  In this case we say, that , 1, , ,iS i k= …  
are jointly sufficient for θ . 
 
Though being quite intuitive the definition is not easy to work with. With the help of the 
factorization theorem however, the determination of sufficient statistics is much easier. 
 
Theorem (Factorization Theorem): A statistic  1( , , )nS X X…  is a sufficient statistic 
for θ  if and only if the joint density of 1( , , )nX X…  factors as  
 

1 1 1( , , ) ( ( , , ) ) ( , , )n n nf x x g S x x h x x=… … …θ θ    (12) 
 
where the function h is nonnegative and does not depend on θ  and the function g  is 
nonnegative and depends on 1, , nx x…  only through 1( , , ).nS x x…  
 
1.5. Likelihood Function 
 
The joint density function of a (random) sample 1, , ,nX X…  is given by  
 

1
1

( , , ) ( ).
n

n i
i

f x x f x
=

=∏… θ θ       (13) 

 
Read in the usual way, 1, , nx x…  are mathematical variables, and θ  is a fixed (but 
unknown) parameter value, which gave rise for the observations at hand. Turned the 
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other way around, given that 1( , , ),nx x=x …  the function is called the likelihood 
function, 
 

1 1( , , ) ( , , ).n nl x x f x x=… …θ θ       (14) 
 
Frequently the (natural) logarithm of the likelihood function, 1ln ( , , ),nl x x…θ  called 
the log-likelihood function is easier to work with. 
 
The (log-) likelihood function is used to compare the plausibility of various parameter 
values, given the observations, 1, , nx x… , at hand. The most plausible value, the 
maximum likelihood value, plays a prominent role in parameter estimation (cf. Section 
3.2). 
 
What makes the likelihood function so important in parameter estimation is the fact, that 
it ‘adjusts itself’ even to rather complex observational situations. Consider for example 
the situation where fixed portions of the sample space χ  are excluded from observation 
(called ‘Type-I censoring’), a situation quite often encountered in reliability or survival 
analysis. Only failures in the interval [ , ],a b  for instance, are observed, failures smaller 
than a  or larger than b  are not observed, though we know their number, r  and ,s  
respectively. In this case the likelihood function is given by 
 

1 ( )
1

( ) ( ) ( ) ( )
n sr sa

i b
i r

l f x dx f x f x dx
−

−∞
= +

⎡ ⎤ ⎡ ⎤⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∏∫ ∫xθ θ θ θ
∞

∝  (15) 

 
where ( )ix  denotes the i-th largest observation. A similar situation arises, when fixed 
portions of the sample are excluded from observation (called ‘Type-II censoring’). If the 
smallest r  and the largest s  observations are excluded, the likelihood function is given 
by 
 

( )

( )
2 ( )

1
( ) ( ) ( ) ( ) .r

n s

sn srx
i x

i r
l f x dx f x f x dx

−

−

−
= +

⎡ ⎤⎡ ⎤ ⋅ ⋅⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∏∫ ∫xθ θ θ θ

∞

∞
∝   (16) 

 
Note that there is a fundamental difference. In the second case r  and s  are 
predetermined values, whereas in the first case they are to be observed as well (but they 
enter the likelihood function as if they were given in advance). In a certain sense the 
likelihood function adjusts itself to the different observational situations. 
 
Apart from the difference mentioned above, the two likelihood functions are quite 
similar in appearance with respect to the parameter θ , being a parameter of the 
underlying stochastic model ( ).f x θ  So we could expect the conclusions drawn to be 
quite similar too. If, by chance, r  and s  coincide for the two cases, and 
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( ) ( ), ,r n sa x b x −= =  the conclusions drawn, though based on different observation 
schemes, should even be identical. 
 
The foregoing example illustrates some aspects of a more general principle. 
 
Likelihood Principle: If 1( , , )nx x=x …  and 1( , , )ny y=y …  are two samples such 
that 
 
( ) ( , ) ( )l C l=x x y yθ θ   for all θ       (17) 

 
where  ( , )C x y  is a constant not depending on θ , then the conclusions drawn from x  
and y  should be identical. 
 
1.6. Distributional Classes 
 
Estimation procedures for distributions sharing some structural properties turn out to be 
quite similar. Moreover, the finding of ‘optimal’ estimators (and the demonstration of 
their optimality) becomes easier, if we can rely on certain properties of the underlying 
distribution. This is the purpose of the following definitions which cover a wide range 
of practically important distributions. The estimation problem for distributions not 
covered by any these classes usually will be more difficult. 
 
1.6.1. (Log-) Location-Scale-Families 
 
A cumulative distribution function (cdf) F  is said to belong to the location-scale-
family (LSF), if it can be written as  
 

0( ; , ) xF x F μμ σ
σ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
       (18) 

 
where 0F is a base (or reduced) cdf (not depending on parameters); μ  is a location 
parameter (not necessarily the mean of X ) and σ  a scale parameter (not necessarily 
the standard deviation of X ). The most important members of this class are the normal 
distributions, where the base is the cdf of the standard normal distribution, .Φ  
 
The density function of a member of a LSF-class can be written as  
 

0
1( ; , ) xf x f μμ σ
σ σ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

      (19) 

 
where 0f  is the density function corresponding to 0F . 
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The cdf F is said to belong to the log-location-scale-family (LLSF), if it can be written 
as  
 

0
ln ( )( ; , ) xF x F μμ σ

σ
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
      (20) 

 
0F again is the base (or reduced) cdf, and ,μ σ  are location and scale parameters, 

respectively. Now these terms are related to ln ( )X  instead of .X  Important members 
of this class are the lognormal and the Weibull distributions. 
 
The density function of a member of a LLSF-class now be written as  
 

0
ln ( )1( ; , ) xf x fx

μμ σ
σ σ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

     (21) 

 
where 0f  is the density function corresponding to 0F . 
 
There are, however, practically important distributions not belonging to these classes; 
the gamma distributions, for instance, are neither LSF nor LLSF. 
 
- 
- 
- 
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