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Summary 

For univariate data it is well known that the sample average can be changed completely 
by one outlier, whereas the sample median remains useful even when a sizeable fraction 
of the data is replaced by outliers. The sample average has a breakdown value of zero, 
whereas the sample median has a positive breakdown value. Also, the least-squares 
regression method has a breakdown value of zero. In order to attain a positive 
breakdown value, new regression methods have been developed, such as the least 
trimmed squares (LTS) method. This approach has had many practical applications. 

For multivariate data the estimation of location and scatter can be done by the minimum 
covariance determinant (MCD) method, which yields high breakdown. This estimator 
can be used for identifying points with high influence in regression, but also for 
detecting multivariate outliers. In multivariate analysis one can replace the classical 
covariance matrix by the MCD estimator, which has successfully been done for 
example for discriminant analysis, principal components and factor analysis, and 
canonical correlation analysis. 
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In robustness, there is currently much activity in generalizing robust methods to other 
models. Positive-breakdown regression methods such as LTS can be extended to models 
with several intercepts, to models including dummy regressors, to the zero-intercept 
regression model, to autoregressive time series, to orthogonal regression, to directional 
data, and so on. Extensions to nonparametric regression, nonlinear regression,  logistic 
regression, and alternating regression have also been constructed. The latter approach, 
robust alternating regression, has successfully been used in robustifying factor models 
and multivariate methods. 

1. Motivation and Introduction 

The field of robust statistics has gained importance within the last decades. Many 
researchers are working on robustifying classical statistical methods and on the 
development of a comprehensive theory of robustness. More and more practitioners are 
using the advantages offered by robust statistics. Standard statistical software packages 
include a variety of tools for robust data analysis. Many statisticians have said that 
statistical data analysis should always consider the aspect of robustness. What is 
“robustness” and what does “robust statistics” mean? 

1.1. The Meaning of Robust Statistics 

The classical assumptions of normality, independence, and linearity are often not 
fulfilled. Statistical estimators and tests which are based on these assumptions will thus 
give biased results, depending on the “magnitude” of the deviation and on the 
“sensitivity” of the procedure. To obtain reliable results, a statistical theory is needed 
that accounts for this kind of deviation from parametric models. Nonparametric 
statistics allows for a whole variety of probability distributions. The restriction to, say, 
normally distributed data is no longer relevant. However, there are also strong 
assumptions in nonparametric statistics, like symmetry and absolute continuity. 
Deviations from these prerequisites again lead to biased and distorted results. Robust 
statistics works in a “neighborhood” of parametric models. It uses the advantages of 
parametric models but allows for deviations. Robust statistics can be seen as a theory of 
approximate parametric models. Hampel et al. gave the definition: “In a broad informal 
sense, robust statistics is a body of knowledge, partly formalized into ‘theories of 
robustness,’ relating to deviations from idealized assumptions in statistics.” 

1.2. Outliers 

The outlier problem is probably as old as statistics. One important task of robust 
statistics is the identification and proper handling of outliers. Outliers are often thought 
to be extreme values which are caused by measurement or transmission errors. A 
definition of the word “outlier” is given in Barnett and Lewis: “We shall define an 
outlier in a set of data to be an observation (or subset of observations) which appears to 
be inconsistent with the remainder of that set of data.” This definition also includes 
observations which do not follow the majority of the data, such as values that have been 
measured correctly but are, for one or another reason, far away from the other data 
values. The cautious formulation “appears to be inconsistent” reflects the subjective 
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judgment of the observer whether or not an observation is declared to be outlying. One 
task of robust statistics is to provide methods of detecting outliers. 

The detection of outliers can be a very hard problem. Whereas in one dimension 
observations that are far away from the main data cloud can easily be detected, this is 
not necessarily the case in higher dimensions, when the outliers are not extreme along 
the coordinates but in any other direction. With increasing dimensionality, multivariate 
outliers become harder to detect, yet they can heavily influence the statistical results. 
Section 5 treats this important problem. 

1.3. Aims of Robust Statistics 

Classical statistical methods try to fit all data points as well as possible. The usual 
criterion is least squares, where the sum of the squared residuals has to be minimized to 
estimate the parameters. If the data set contains outliers, the parameter estimates may 
deviate strongly from those obtained from the “clean” data. For instance, outliers can 
attract the regression line. Since all data points obtain the same weight in the least-
squares criterion, large deviations are distributed over all the residuals, often making 
them hard to detect. 

One aim of robust statistics is to reduce the impact of outliers. Robust methods try to fit 
the bulk of the data, which assumes that the good observations outnumber the outliers. 
Outliers can then be identified by looking at the residuals, which are large in the robust 
analysis. An important task afterwards is to ask what has caused these outliers. They 
should not be ignored, but they have to be analyzed and interpreted. 

As already mentioned in Section 1.2, robust statistics should ensure reliable results in 
the case of deviations from idealized assumptions. Apart from outliers, other deviations 
include unsuspected serial correlations that are due to deviations from the independence 
assumption. Hence, robust statistics entails much more than just removing some 
extreme data points. Good robust statistical methods should also prevent efficiency loss, 
which means loss in precision of the statistical estimation. 

1.4. History 

Aside from visual inspection of the data, which had already been done in the prehistory 
of statistics, the beginning of robust statistics dates back to the eighteenth century, when 
the first rules for the rejection of outliers were developed. These rules were formalized 
in the nineteenth century, and techniques for robustly estimating “means” were used. 
Later on, estimators that downweight outliers were developed. Robustness of statistical 
testing was considered in the first half of the twentieth century. Box (1953) and Tukey 
(1960) demonstrated the need for robust methods. Their work can be seen as a 
breakthrough in robust statistics. A few years later, Huber (1964) and Hampel (1974) 
laid the foundations of a comprehensive theory of robust statistics. Since then the 
number of papers on robustness has exploded, and the field of robust statistics achieved 
vast importance. In recent years, previous approaches have been combined, the 
computational complexity of algorithms has been intensified, and new fields of 
applications have been opened up. 
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