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Summary 
 
Plasma is a partially or fully ionized gas which satisfies the condition of quasi-
neutrality. A major part of the universe exists in the state of plasma. Plasma is widely 
used in industrial and laboratory conditions. In the second part of the 20th century 
plasma physics was formed as an original branch of physics. The theoretical basis of 
plasma physics is found in equations of mechanics of continuous media taking into 
account electromagnetic forces and Maxwell’s equations. Different simplifications of 
these equations give a series of mathematical models. They describe various, 
complicated processes in plasmas whose spatial and time scales differ by many orders. 
 
1. Introduction 
 
Plasma (from Greek πλασμα, literally, - generated, moulded) is a partially or fully 
ionized gas, which satisfies the condition of quasi-neutrality. The term "plasma" was 
introduced in 1923 by American physicists Langmuir and Tonks. A major part of the 
universe exists in the state of plasma: galactic nebula, stars, interstar medium, 
magnetosphere and ionosphere enclosing the Earth. Plasma is widely used in industrial 
and laboratory conditions: various gas discharges, magnetohydrodynamic generators, 
plasma accelerators, high-temperature plasma in devices designed for controlled 
thermonuclear fusion. 
 
The properties of plasma essentially differ from those of the usual gases. It is due to two 
of its singularities. At first, plasma is strongly affected by electric and magnetic fields. 
They can be divided on exterior and interior. The latter are formed by charges and 
currents in the plasma. Such peculiar self-action produces a lot of specific properties, 
related to plasma oscillations and instabilities. As a typical example it is possible to 
mention longitudinal Langmuir oscillations with frequency ω0=(4πne2/me)1/2. Secondly, 
the interaction between charged particles of plasma is determined by Coulomb force 
with a slowly decaying potential. Due to this the basic contribution to changes of a 
distribution function of particles over velocities is given by far collisions, at which the 
magnitude of transmitted impulse  Δp is small. As a result of this the Coulomb collision 
operator, specific for plasma, differs from the classical Boltzmann collision integral for 
gases. 
 
Plasma is characterized by a large number of parameters. The ratio of the number of 
ionized atoms to their total number is called the degree of ionization. Plasma can be in 
weak, strong and fully ionized states. The degree of ionization depends on the 
temperature and exterior action, for example, on a radiation flow. The simplest is the 
case of the fully ionized plasma. Such a state can be obtained only for the lightest 
elements from hydrogen up to carbon. The equilibrium composition of the weakly 
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ionized plasma can be calculated well enough using the Saha formula. The most 
complicated for description is the case of plasma of heavy elements. The multicharged 
ions are present in it having a different degree of ionization and maintaining a part of 
their electrons. 
 
The temperature of plasma varies over a wide range depending on its origin. Plasma 
with T≤105 K is considered as the low-temperature, with T≈106−108 K − as the high-
temperature. For ignition of controlled thermonuclear fusion with positive balance of 
energy it is necessary to heat up deuterium-tritium mixture to a temperature exceeding 
108 K. In many cases plasma can be nonisothermal, then it is necessary to distinguish 
temperature of electrons Te, ions Ti, and  non−ionized atoms  Ta. 
 
The essential distinction of electron and ion masses results in various characteristic 
times of relaxational processes and establishment of Maxwellian distribution functions 
of particles of different sorts. In the elementary case of homogeneous, fully ionized 
plasma consisting of electrons and one-charge ions (ne=ni=n) it is possible to choose 
four characteristic times: τe is the time of a maxwellization distribution function of 
electrons as a result of their collisions, τi is a similar characteristic time for ions, τei is 
the relaxation time of relative motion of electrons and ions, τT is the characteristic time 
of energy exchange between electrons and ions in nonisothermal plasma. Accepting the 
fastest time τe as the basic, one can determine the following hierarchy between the 
characteristic times: 
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Here e is the elementary charge, me and mi are masses of electrons and ions, n is a 
plasma density, k is the Boltzmann constant, L is the Coulomb logarithm. Due to major 
difference in masses the "slowest" process is the process of energy exchange between 
electrons and ions. 
 
The plasma density varies in much wider limits than temperature. For space mediums 
the range of plasma densities is of 30 orders: from 10−6 cm−3 for interstellar space up to 
1023−1024 cm−3 and above in stars. The range of plasma densities produced for different 
purposes by human is also wide enough. For example, in controlled thermonuclear 
fusion research the density of plasma varies from  1013−1014 cm−3 in tokamaks up to  
1023−1024 cm−3 in special targets for laser thermonuclear fusion. 
 
It is necessary in multicomponent plasma to introduce density nα for every ion 
component of plasma separately. The ions differ not only by chemical elements but also 
by the degree of ionization, so the requirement of plasma neutrality becomes: 
 

en z n ,α αα=∑       (2) 
 
where zα is the multiplicity of the ion charges. If the equilibrium distribution of ions 
over degrees of ionization in multicomponent plasma is not established, there can be 
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very sharp changes in densities of separate components. 
 
The natural and laboratory plasma in many cases is magnetized. It has a number of 
specific peculiarities. The Lorentz force makes charged particles to move over 
complicated trajectories: they freely move along the field lines with velocity v⊥, rotate 
in a plane perpendicular to the field line with Larmor circle of radius rB with frequency 
ωB: 
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where v⊥  is the component of velocity perpendicular to the magnetic field. At last, the 
centre of a Larmor circle drifts perpendicular to the magnetic field. The velocity of the 
drift is defined by the gravitational field, electric field and non-uniformity of the 
magnetic field. The energy ε and the magnetic moment 2m v /(2B)αμ ⊥=  are conserved 
during that composite motion. 
 
The essential influence on the character of motion of charged particles in a magnetic 
field refers not only the local value of its strength, defining the Larmor frequency and 
radius, but also the general topological structure of its field lines. For example, the field 
of the Earth looks like a magnetic dipole, its strength increases near the magnetic poles. 
The auroras in near Earth plasma are interlinked to it. Magnetic confinement and 
thermo-insulation of high-temperature plasma are provided by the special structure of 
the field in tokamak.  
 
Plasma is complex and manifold in its appearance. Its behaviour is determined by the 
processes of diverse nature which have spatial and time scales distinguishing by many 
orders. Mathematical models are used for plasma description, which include equations 
of the mechanics of continuous media taking into account electromagnetic forces and 
Maxwell’s equations. The kinetic, magnetohydrodynamic and transport models of 
plasma are distinguished depending on the chosen approximation. 
 
2. Kinetic models 
 
2.1. Liouville equation 
 
The kinetic models give the most detailed description of gas and plasmas. The following 
probability representations are their basis. A system, consisting of N particles, is 
described with the help of the distribution function F(t, x1,...,xN), where xi=(ri, pi) are 
coordinates and impulses of the i-th particle. The distribution function is treated as a 
probability density in 6N-dimensional phase space, the integral from which is 
normalized to unity. If all particles make only mechanical motion, so that the number of 
particles of each kind does not vary (for example, there is no ionization, recombination, 
chemical transmutations), then  one can write for function F  the equation of continuity 
in the phase space and transform it with the help of the Hamilton equations of motion to 
the form: 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICAL MODELS OF LIFE SUPPORT SYSTEMS - Vol. I - Mathematical Models of Plasma Physics - N.N.Kalitkin, 
D.P.Kostomarov 

©Encyclopedia of Life Support Systems (EOLSS) 

N

i i i ii 1

F H F H F 0,
t =

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ − =⎜ ⎟

∂ ∂ ∂ ∂ ∂⎝ ⎠
∑ p r r p

  (4) 

 
where H(x1,...,xN) is the Hamiltonian function of the considered system of particles. 
Equation (4) is called the Liouville equation. 
 
2.2. BBGKY hierarchy of kinetic equations  
 
The Liouville equation plays an important role in the construction and justification of 
the kinetic models of plasma. However because of the large number of variables it is too 
complicated for solution of practical problems. Integrating the distribution function F in 
part of its arguments, it is possible to introduce one-particle distribution functions, two-
particle distribution functions and so on, and to deduce relevant equations for them. 
 
One-particle distribution function of particles of kind α with argument x1=(r1,p1) is 
obtained from function  F  by the following way: 
 

1 1 2 N 2 N
N

f (t, ) F(t, , ,..., , )d ,...,d .
V
α

α = ∫x x x x x x  (5) 

 
Here V is the geometrical volume occupied by the plasma, Nα  is the total number of 
particles of kind α,  which is used to normalize function fα(t, x1). Two-particle 
distribution functions, three-partial distribution functions are introduced similarly. 
 
If one integrates the Liouville equation over all variables, except for x1, the equation for 
one-particle function fα(t, x1) is obtained, in which the two-particle distribution 
functions enter in an integral term. In a similar way it is possible to get the equation for 
two-particle distribution functions fαβ(t, x1, x2) containing an integral term with three-
particle distribution functions and so on. The obtained engaging chain of equations is 
known as Bogolubov, Born, Green, Kirkwood, Yvon hierarchy (BBGKY hierarchy). Its 
construction is appropriated to the decomposition of the Liouville equation in powers of 
parameter ν, which is a ratio of the mean energy of particle interaction to the mean 
kinetic energy of particles. BBGKY hierarchy is more convenient for the further 
analysis, than the Liouville equation. 
 
The basic kinetic models of plasma are obtained from the BBGKY hierarchy with the 
help of the following additional simplifying assumptions: 
 
 The number of particles is great: N >> 1. 
 The energy of interaction between particles is small in comparison with their kinetic 

energy: ν<<1. 
 The action of external fields on the process of conjugate collisions between particles 

is negligible. 
 
These simplifying assumptions allow to tear off the BBGKY hierarchy and to get the 
equations for distribution functions for small number of particles. An especially 
important role in plasma studies is played by the kinetic equations for one-particle 
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distribution functions. The Vlasov equation with the self-consistent electromagnetic 
field, the Boltzmann equation and the Landau equation with Coulomb collision operator 
are related to this kind. Historically they have appeared earlier than the BBGKY 
hierarchy, however the concept of the hierarchy on the basis of the uniform approach 
has allowed giving them rigorous theoretical ground, determining the regions of 
applicability, and aiming at ways for construction of a more complicated kinetic models. 
 
2.3. Vlasov equation with the self-consistent electromagnetic field 
 
In 1938 Vlasov proposed the concept of description for a wide range of plasma 
processes. The basis of the model is in the kinetic equation without the term for 
collisions: 
 

f f e f1( ) 0.
t m c
α α α α
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Electric and magnetic fields included in the equation through the Lorentz force are 
determined from Maxwell equations for vacuum: 
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The set of equations is completed by the formulas for the charge and current densities, 
which are expressed through the distribution function of particles: 
 

(t, ) e f (t, , )d ,

(t, ) e f (t, , ) d .

α α
α

α α
α

ρ =

=

∑ ∫

∑ ∫

r r v v

j r r v v v
           (8) 

 
Here summation over α means summation over all particle species. The field, defined 
by Equations (7), and (8), is termed as "self-consistent". It is determined by distribution 
of particles and in its turn influences their motion due to Equation (6). The concept of a 
self-consistent field appeared to be very effective. The Vlasov equation can be derived 
from the BBGKY hierarchy with the supposition, that the multiparticle distribution 
function is the product of one-particle functions. 
 
The set of Equations (6)-(8) has formed the basis for a huge number of papers on a 
theory of waves, stability, collective processes in plasma. Here are some of the most 
widely known results: 
 
 Existence in plasma of longitudinal plasma waves. The effect of Landau damping. 
 General theory of oscillations and stability of plasma. Effect of the spatial 

dispersion. 
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 Stabilization of bump on tail instability at a nonlinear stage by the formation of a 
plateau on the distribution function. The quasilinear theory of waves in plasma. 

 Effect of "echo in plasma". 
 
2.4. Kinetic equation with the operator of binary collisions 
 
The next step in the development of the general concept of the kinetic theory consists in 
expression of binary correlation function through one-particle distribution functions 
with the help of simplifying assumptions and in obtaining the kinetic equation with a 
collision integral: 
 

f f f
L [f ].

t m
α α α α

αβ α
α β

∂ ∂ ∂
+ + =
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F

v
r v

               (9) 

 
Here Fα  is the exterior force operating on particles of kind α, Lαβ are partial operators 
of collisions, which describe changes of the distribution function fα as the result of 
collisions of particles α with particles β. In particular, the operator Lαα describes 
collisions between particles α. Summation over β means  summation over all particles 
species. 
 
For neutral particles α and β the interaction potential between which quickly decreases 
with distance the operator Lαβ is the classical Boltzmann collision integral. Equation (9) 
proposed by Boltzmann underlies the kinetic theory of gases. 
 
The interaction between charged particles submits to Coulomb law. The Coulomb 
potential slowly decreases with distance. Due to this the basic contribution in the 
operator Lαβ is given by distant collisions relevant to large aiming parameters. The 
magnitude of the transmitted impulse Δp is small for them. The account of these 
singularities of the process results in the operator of Coulomb collisions obtained by 
Landau: 
 

2 2

i
k l l

2 e e L f ff f
L [f ] U d .

m v m v m v
α β β βα α

αβ α κ
α α β

π ′ ′⎛ ⎞∂∂∂ ⎜ ⎟ ′= − ′⎜ ⎟∂ ∂ ∂⎝ ⎠
∫ v         (10)  

 
Here 
 

2
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L is the so-called Coulomb logarithm. In 20 years after Landau’s work other derivation 
of the Coulomb collision operator was given. The final result has appeared to be 
equivalent to (10), but its representation in the form of Fokker-Planck operator is more 
convenient for solution of practical problems. 
 
The kinetic equations with the Boltzmann and Landau-Fokker-Planck collision 
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operators can be obtained uniformly from BBGKY hierarchy. Both operators have the 
following properties: 
 
 Reduce to zero for Maxwellian distribution functions of particles α and β with 

identical temperature and mean transfer velocity. 
 Conserve the number of particles. 
 Conserve the total impulse of particles α and β. 
 Conserve the total energy of particles α and β. 
 Do not increment  the H-function (the Boltzmann  H-theorem). 
 Besides for a Coulomb operator, which is a differential operator of second order in 

respect to the distribution function fα, one more property is valid: 
 Operators Lαβ  are elliptic, i.e. the quadratic form, which can be formed with the 

help of the matrix of coefficients at the second order derivatives of function fα in the 
operator Lαβ, is positively defined. 

 
Property 6 reveals the mathematical nature of the Coulomb operator and justifies the 
correctness of the statement of the problem about the relaxation of the distribution 
function in the velocity space due to Coulomb collisions. 
 
The operator of Coulomb collisions was widely used for the solution of many problems 
of plasma physics. Here are references to some examples: 
 
 Determination of characteristic relaxation times. 
 Determination of classical plasma conductivity. 
 Plasma confinement in adiabatic traps with magnetic mirrors. 
 Discovery of the effect of run away electrons. 
 Plasma heating by neutral beam injection. Interaction of plasma with thermonuclear 

alpha-particles. 
 Plasma heating by high-frequency electromagnetic fields. 

 
In the next years more complicated kinetic models were developed and applied to 
research in plasma physics by efforts of Balescu, Lenard, Klimontovich and others. 
 
- 
- 
- 
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