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Summary 
 
The problem of air quality is modeled by a reaction-advection-diffusion PDE,, where 
the unknown is the vector of the concentrations of model chemical components 
depending on space and time. Generally the flow fields are pre-processed by 
meteorological computations or parameterizations. The coupling of all chemical 
components is given by the chemical mechanism considered. Essentially this 
mechanism appears in the right member of the previous equation. The first question to 
solve is to introduce the fundamental chemical kinetic system producing ozone (the 
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main pollutant and greenhouse gas). Subsequently, one needs to choose a solution 
method for the PDE. The finite volume method is the right framework for that, and we 
present it in the context of Godunov schemes (Van Leer, PPM). For didactic reasons we 
consider the 1D case (in space) then the 3D case. After using the finite volume method, 
we obtain a large system of stiff ordinary differential equations (taking into account, 
furthermore, depositions and emissions). Due to the stiffness and the size of the system 
of ODE’s, a method especially dedicated to this system has been developed (two-step). 
Space editorial constraints do not allow for a comprehensive description and 
comparison of the models used in the field of air pollution problems. Rather we 
concentrate in a last section on one model with an illustrative example: the simulation of 
the episode of unusually persistent high ozone concentrations in western European 
countries during August 2003.  
 
1. Introduction 
 
In this chapter on air pollution modeling we emphasize mainly models on air quality 
forecasting. This is a challenging scientific problem, which has recently received 
considerable attention in many industrialized countries due to the increasing awareness 
of the effects, on health and environment, of the emissions into the urban atmospheres 
of pollutants, especially volatile organic compounds (VOC’s) and nitrogen oxides 
( xNO ). The environmental benefits of reliable air quality forecasts are obvious: 
populations can be more efficiently protected by means of information on hazardous 
conditions or real-time emission abatement strategies. The scientific aspects of air-
quality forecasting are of major scientific interest, since prediction lies at the end of the 
understanding process. In this presentation we focus on models based on the physical 
equations (often called “deterministic models”) driving the chemistry and the transport 
of pollutants. Deterministic models require input of numerous data (e.g. emissions, 
meteorology, input cover), which are difficult to collect in real time. Problems with data 
may eventually become less and less significant with time, due to increase in computer 
capabilities and to improvements in the data bases required for the deterministic 
approach of forecasting. Obviously the methods presented here are generic and valid for 
any problem related to air quality modeling.  
 
Air pollution modeling always starts with atmospheric chemical kinetics systems. These 
describe chemical reactions between trace gases, such as ozone, nitrogen oxides, 
methane, hydrocarbons, etc. One often studies ozone in the lower atmosphere, as ozone 
is dangerous for humans and animals during short term smog episodes and can damage 
crops when levels are too high over longer seasonal periods. Ozone is also a greenhouse 
gas, similar to methane, carbon dioxide and other species. Air pollution models are 
therefore also used in connection with climate studies. Ozone itself is not emitted but 
formed in very many different reactions. In Section 2 we give the fundamental chemical 
mechanism accountable for ozone production. A nice introduction to the field of 
atmospheric chemistry can be found in Graedel and Crutzen [14].  
 
Air pollution modeling is based on the assumption of no feedbacks between chemical 
species and flow fields (wind velocity, turbulent diffusivity, temperature). After having 
pre-processed the flow fields by meteorological computations or parameterizations, 
ones solves thereafter a reaction-advection-diffusion PDE representing the one change 
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in concentrations of chemical species:  
 

div( ) div( ) ( ) ( )t t
t

∂
+ = + , − , .

∂
C VC KC P C L C  (1) 

 
Here C  is a vector containing the concentrations of all m  model chemical species 
depending on space and time t , V  is three dimensional wind vector, K  is turbulent 
diffusive matrix, and P  and L  represent production and loss terms due to chemical 
reactions, emissions and depositions. The wind field V  and the diffusion coefficient 
matrix K  are given, so that the problem is linear with respect to the transport part. The 
chemical reactions between these components are of first or second order, so that the 
contribution of the chemical mechanisms in terms P  and L  is quadratically non-linear 
(it is by this mechanism that P  and L  depend on, for a specific concentration chemical 
species c , the concentrations of other constituents). Without the chemical mechanism 
the m  equations of the PDE system (1) are uncoupled.  
 
In methods of solution often used in air pollution modeling, the PDE system (1) with its 
boundary conditions is first discretized in space on a three-dimensional Eulerian grid. 
On the discretized space grid the system of ODE’s is then solved in time.  
 
The major transport mechanism in air pollution models is advection by the wind field: 
hence the quality of the advection computation is crucial. The finite volume method is 
an appropriate one for the advection calculation. In Section 3 we examine the scalar 
advection problem in one space dimension. We start by considering a finite difference 
method (the upwind method) by contrast to a finite volume method. Next we consider 
several finite volume methods in the Godunov framework, as pioneered by Godunov, 
van Leer and others (see for instance [21]). The modeling of the 3D advection problem 
is presented in Section 3.3. 
  
The wide range of chemical timescales ( 910 s−  for excited oxygen radical 1DO  to be 
compared with several months for methane) induces the well-known stiffness of the 
resulting equations, as seen in Section 2. The time integration of such ODE’s has then to 
be carefully designed in order to avoid excessively high computational cost. Implicit 
numerical schemes are highly recommended even if they are however associated with 
CPU costs which can remain large (due to inversions of matrices whose dimension is 
large: currently the number m  of species is about one hundred). In view of the 
dimension and stiffness of the ODE’s system together which the large number of cells 
in 3D, ODE integrators based on standard numerical routines are not feasible in a 
operational way. This has led to the use of time integration methods especially 
dedicated to the chemical models.  
 
In Section 4 we start by reviewing classical and very simple method for solving ODE’s: 
the Euler methods. Due to the production-loss form of the ODE’s descended from the 
chemical mechanism, specific methods of solutions have been designed. A traditional 
tool for modeling the chemistry is the well-known QSSA method, advocated long ago 
by Hessvedt and co-workers [18]. The scheme must be heavily tuned by “lumping” in 
order to be efficient. An alternative is to use a Backward Differentiation Formula (BDF 
method, see [4] chapter 7 for instance, for a nice presentation of these methods) 
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(implicit by construction and well-suited for stiff problems) and adapt it to the special 
form of the chemistry modeling. By that, for instance the BDF2 method (number 2 is 
linked with the order of this method) can be write in a particular form; the resulting 
implicit scheme can be solved by a Gauss-Seidel process. This algorithm (BDF2 applied 
to production-loss form, with resolution of the implicit scheme by Gauss-Seidel), is 
proposed by Verwer [38] like the two-step method. This two-step method is more or 
less comparable to the QSSA method. The two-step and QSSA methods are presented in 
the Section 4.2.  
 
Space constraints do not allow for a comprehensive description and comparison of the 
models used in the field of air pollution problem. Rather, we concentrate in the last 
section on the CHIMERE-continental software, a European scale Eulerian chemistry 
transport model recently developed at Laboratoire de Météorologie Dynamique, Ecole 
Polytechnique, Palaiseau, France. The description provided by a chemistry-transport 
model can be more detailed than that from a survey only. We present one possible 
chemical mechanism, together with the emissions and dry depositions modeling. The 
modeling of advection, diffusion mechanisms and boundary layer (where essentially the 
pollution exits, furthermore it is the domain of interest for health and environment) 
processes are also described with any details. Taking into account the advection and 
diffusion operators together with the chemical mechanisms (included emissions and 
deposition), the resulting ODE’s system is solved by a two-step procedure.  
 
Obviously a good approach is searching for efficient numerical solvers that provide a 
reasonable compromise between accuracy and CPU requirements. We intend this 
presentation to give information on these aspects of the problem. 
  
2. A Fundamental Chemical Kinetics System 
 
The following are basic reactions in any tropospheric air pollution model:  
 

( )
( )

1

2

3

3P
2

3P
2 3

3 2 2

NO NO+O

O +O O

NO+O O +NO

k

k

k

hν+ ⎯⎯→

⎯⎯→

⎯⎯→

 (2) 

  
In this system 3PO( )  is the oxygen atom in its fundamental state. The first equation is 
the principal source for 3PO( )  by photolysis of nitrogen dioxide ( 2NO ) in the 
troposphere. The second equation describes the formation of ozone ( 3O ). The third 
equation describes ozone destruction by reaction with nitrogen monoxide ( NO ) and 
formation of 2NO . Normally, NO , 2NO  and 3PO( )  are in equilibrium and the ozone 
concentration is moderated. The formation of high ozone concentrations requires a 
mechanism that quickly consumes NO  and regenerates 2NO . In a polluted 
environment, this is realized by coupling the 2NO/NO  cycle with weathering 
hydrocarbons ( HC ). The HC  attacked by a hydroxyl radical ( OH ) becomes an alkyl 
radical ( R ) which, by a sequence of quick reactions with air-oxygen, produces peroxy 
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and hydroperoxyl radicals (( 2RO ) and ( 2HO ) respectively) which, in turn, quickly 
oxidize NO  to 2NO  with regeneration of the OH  radical. These oxidation reactions 
from NO  to 2NO  short-circuit that for NO  by 3O  (see (2)) and the latter can 
accumulate.  
 
The engine behind this complex chemistry is, therefore, the photolysis of participating 
chemical components ( 3O , 2NO , etc.). In this way high levels of ozone can be produced 
during episodes of intensive solar irradiation. This condition is not sufficient, however. 
The precursors sources must be sufficiently important, especially in HC , and dynamical 
processes must favor the accumulation of precursors and products with weak dispersion 
and dilution. A good reference for the chemistry of the troposphere can be found in 
Seinfeld and Pandis [27].  
 
For illustration, we show the ODE system associated with (2). We note by [x] the 
concentration of the chemical species x. Let 3P

1 [O( )]c = , 2 [NO]c = , 3 2[NO ]c = , 

4 3[O ]c = , then (2) can be written as:  

1 1 3 2 1

1 3 3 2 42

3 2 4 1 33

2 1 3 2 44

c k c k c
c k c k c c
c k c c k c
c k c k c c

= −
= −
= −
= −

 (3) 

 
Note that oxygen in these equations is taken as constant, which is a reasonable 
assumption. Typically, the first reaction is photochemical and represents rapid changes 
in concentrations values at sunset and sunrise.  
 
3. Modeling of Linear Advection. 
 
We start with the one-dimensional scalar advection problem in one space dimension and 
discuss separately selected finite difference and finite volume methods of solution. 
Next, we tackle the 3D problem. For a more detailed presentation of the methods 
referenced in this section, the reader is referred to:  
(http://gershwin.ens.fr/houches2002/Cours/Roux/leshouches.pdf ).  
 
3.1. Modeling in 1D 
 
Let us consider the transport of a single pollutant (i.e. ozone). In view of the law of 
conservation of mass, the one-dimensional advection of this pollutant is given by:  
  

( ) ( ) [ ]

( ) ( )0

0 , 0,

, 0

aua x t T
t x

a x a x x

∂⎧∂
+ = ∀ ∈ ×⎪

∂ ∂⎨
⎪ = ∀ ∈⎩

 (4) 

 
where a is concentration, u is wind velocity, x is distance, and t is time. 
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Since (4) is linear in space, then the transport process does not introduce more 
irregularities than those in the initial condition. Two numerical methods are using to 
solve (4): the finite difference method and the finite volume method.  
 
3.1.1. Generalities and Finite Difference Methods 
 
We next outline basics concepts of the finite difference method. For simplicity of 
presentation we consider in this Section 3.1 that u  is constant and known. Then (4) 
becomes  
 

[ ]0 ( ) 0a au x t T
t x

∂ ∂
+ = ∀ , ∈ × ,

∂ ∂
 (5) 

 
The exact solution of (5) becomes 
 
( ) ( )0a x t a x ut, = −  (6) 

 
Definition of a regular mesh. 
 
We define a regular mesh in the ( )x t,  domain by the grid points jx j x= Δ , nt n t= Δ , 

where j  and n  are integers, Lx
M

Δ = , Tt
N

Δ =  and M  and N  are the number of nodes 

in the x  and t  directions, respectively (see Figure 1). We call n
ia  to an approximation 

of the true solution ( )n
ia x t,  at point ix  and at time nt .   

 

 
 

Figure 1. Discrete network of the points ( )( ), andj x n t j nΔ Δ ∈ ∈Z N  for finite 
difference approximation. 

 
3.1.2. Simple Finite Difference Schemes 
 
For the advection equation (5) when 0u ≥ , perhaps the most simple scheme is the left 
one-sided scheme (see Figure 2):  
 

( )1
1

n n n n
i i i i

ta a u a a
x

+
−

Δ
= − −

Δ
. (7) 
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This particular form of the method in Eq. (7) is called explicit, since the advance in time 
is done directly without any matrix inversion. 
 

 
  

Figure 2. Left one-sided scheme. 
 
The CFL condition. 
 
Courant, Friedrichs and Lewy recognized, in 1928, a necessary stability condition for 
any explicit numerical method. This is known as the CFL condition.  
 
For the left one-sided scheme (7) the CFL condition is 
 

0 1tu
x
Δ

≤ ≤
Δ

. (8) 

 
In general, meeting the CFL condition is not sufficient for stability. For the left one-
sided scheme, however, the CFL condition is both necessary and sufficient for stability.  
 
A similarly simple scheme for 0u ≤ , is the right one-sided method  
 

( )1
1

n n n n
i i i i

ta a u a a
x

+
+

Δ
= − −

Δ
 (9) 

 
We refer to (7) with 0u >  as upwind scheme and to (9) with 0u < .  
 
The reader is referred to E. Godlewski and P. A. Raviart [12] for a discussion on the 
merits and demerits of these simple schemes (and other schemes). 
 
3.2. Finite Volume Method in 1D.  
 
In finite difference methods the number of grid points tends to be very large as the 
resolution required to resolve relevant processes needs to be high. The location of grid 
points does not generally coincide with that in which we have data. In addition, the data 
are available as surface and/or volume averages. It is appropriate, at least for this 
reason, to use finite volume methods. Also, the wind speed u  is not constant and we 
ought to consider now the conservative formulation (4). The aim is to generalize the 
upwind scheme and others schemes by application of the Godunov method, which is the 
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right way to proceed. Indeed we know that the use of conservative numerical methods 
preserve us against the convergence of the method towards a non-solution of (4) (in the 
nonlinear case). The finite volume method is a particular case in the family of the 
conservative methods. Naturally in this family we can define methods with different 
orders of accuracy in space. First-order methods have the drawback of being diffusive. 
The use of higher order methods results in less diffusive schemes but produces 
eventually spurious oscillations in the vicinity of pollution propagation front: these 
methods are dispersive. Fortunately these oscillations can be controlled by the use of 
slopes limiters.  
 
The first-order finite volume method is the original Godunov scheme; by extension, this 
scheme is the framework of many others schemes such as MUSCL or PPM (Piecewise 
Parabolic Method) (see the Section 3.2.3), referred to as Godunov-type. MUSCL and 
PPM have an order greater than one, for which the slope limiter technique, running with 
any improvements in their employment, guarantees control of spurious oscillations 
making the scheme TVD (Total Variation Diminishing) (see LeVeque [21] p. 165, for 
definition). This important property is at least necessary for proof the convergence (by 
the Lax-Wendroff theorem, see for instance [21] p.130) of the numerical solution to the 
solution of the conservative equation (4).  
 
- 
- 
- 
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