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Summary  
 
Models describing the spread of pollution through soils are discussed. The spread of 
pollution is soils is controlled by the flow of water and, in most cases, is described by the 
convective-dispersive equation. First we consider cases when the water velocity is assumed 
constant. Effects of boundary conditions, chemical reactions, adsorption and species 
competition are described for this case. Then two other cases are discussed; (1) when 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICAL MODELS – Vol. II - Mathematical Equations of the Spread of Pollution in Soils - F. Stagnitti, J.-Y. Parlange, 
T. S. Steenhuis, D. A. Barry, D. A. Lockington, G. C. Sander 

©Encyclopedia of Life Support Systems(EOLSS) 

hydrology controls solute transport and (2) when the convective-dispersive equation is less 
important. In the former case, erosion due to raindrop impact and the transport of pollutants 
adsorbed on fine particles is discussed. In the latter case, preferential flows, which can be 
linked to either structural voids in the soil (e.g. macropores, cracks, etc) or to flow 
instability are considered. Mathematical expressions describing these cases are presented. 
In the final section of this chapter we present a discussion of cases when Richards’ 
equation controls water movement. When Richards’ equation is used, it is difficult to 
analyze solute transport due to the strongly nonlinear nature of the equation. However, a 
few exact analytical solutions have been obtained recently and are presented here. 
 
1. Introduction 
 
The study of chemical transport in soils is important for a number of reasons. Some 
chemicals are important as they are required for soil and plant health (e.g. micronutrients). 
Other chemicals may be highly toxic particularly if they are present in high concentrations. 
A chemical becomes a pollutant if its concentration exceeds some prescribed water quality 
standard, or if a beneficial water use has been impaired, and if the cause is induced by 
human activity. The study of the fate of chemicals and chemical pollution in soil is vital for 
sustaining agricultural productivity and land utility.  
 
The geological media between the land surface and the regional water table below is called 
the unsaturated zone or vadose zone (Stephens, 1996). The word “vadose” is derived from 
the Latin word vadosus meaning shallow (Looney and Falta, 2000a). In accord with its 
definition and meaning, the vadose zone includes the crop root layer, the intermediate zone 
between the root layer and the capillary fringe above the saturated water table. This zone 
therefore plays an integral role in the global hydrological cycle controlling surface water 
infiltration, runoff and evaporation and hence the availability of soil water and nutrients to 
plants. Initial investigations of this zone were focused on water availability to crops and 
optimal management of the root zone. However, in recent years much more attention has 
focused on chemical transport in and through this zone as a result of increased use of 
agrochemicals such as fertilizers and pesticides and increased demands to store and dispose 
of industrial and municipal wastes such as sewage. This zone is typically the first 
subsurface environment to encounter surface applied agrochemicals and contaminants and 
hence all surface and subsurface chemical concentrations and subsequent environmental 
impacts are inextricably linked to the physical, biological and chemical dynamics including 
sorption-desorption, volatilization, photolysis and degradation (Looney and Falta, 2000a). 
 
Our current understanding of physical and chemical processes in the vadose zone results 
largely from more than 70 years of mathematical modeling of variably saturated flow using 
Richards’ equation (Richards, 1931) coupled with the Fickian-based convection-dispersion 
equation for solute transport. Analytical and numerical solutions of these classical 
equations are widely used to study and predict water flow and solute transport for specific 
laboratory and field experiments and to extrapolate these results for other experiments in 
different soils, crops and climatic conditions. However, many recent studies have 
demonstrated that the assumptions implicitly adopted in the Richards’ and convective-
dispersion equations are limiting the scope and application of solutions to these equations 
for many agricultural and forestry management strategies. The spread of solute and 
pollutants in soils is complicated by non-random spatial and temporal variations of 
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physical, chemical and biological components of soils (Hill & Parlange, 1972; Stagnitti, et 
al. 1995; Parlange, et al.1996; Stagnitti, et al. 1995). One manifestation of spatial and 
temporal heterogeneity in soils is the phenomenon of preferential flow, a general term used 
to describe a variety of physical and chemical non-equilibrium flow processes. 
 
This chapter introduces a number of useful equations to study the spread of chemicals and 
pollution in soils. It begins with the classical descriptions of convection and dispersion and 
then introduces recent extensions, new solutions and new models incorporating important 
mechanisms such as preferential flow. 
 
2. Convective-Diffusive Equation 
 
Chemicals carried by water in and on the soil can follow a variety of paths. In the simplest 
case, a one-dimensional convection takes place which can be accompanied by dispersion, 
adsorption and chemical reaction. Description of contaminant transport in terms of an 
average water velocity, v, by the convective-dispersive equation remains the first and 
fundamental transport equation to be considered. In its simplest form, the concentration of a 
chemical moved in one-dimension in the x direction, can be described by the following 
equation, 
 

acc c cv D f
t x x x t

∂∂ ∂ ∂ ∂⎡ ⎤+ = − −⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦
 (1) 

 
where v is the average water velocity, D  is the dispersion, ac  the concentration of adsorbed 
chemical and f  is the irreversible reaction decay rate. In general, ,  ,  ,v D f  and ac could be 
complex functions of ,  ,  and c x t . Consequently no “exact” simple analytical solution exists 
for all cases. When f  is a linear function of ,   and c D v  are constant and a ( -1)c R c= , 
where R  is the retardation factor (assumed constant), then Eq. (1) is linear with constant 
coefficients. In this case many exact solutions can be obtained, e.g. using Laplace 
transforms. van Genuchten and Alvers (1982) have presented numerous exact solutions for 
Eq. (1) with constant coefficients for a wide variety of boundary and initial conditions. 
 
3. Effects of Boundary Conditions 
 
In a typical laboratory experiment involving a column with a finite length L , boundary 
conditions at 0x =  and x L=  must be specified. At 0x = , depending on the method of 
injection, c  will be imposed, for instance if water with a constant concentration 0c  is 
pushed at a constant rate, then the flux of material entering the column is constant, or, 
 

( ) 0f / at 0cc c D v c x
x
∂

≡ − = =
∂

 (2) 

 
where fc is called the flux concentration (Kreft and Zuber, 1978, 1986; van Genuchten and 
Parker, 1984) and c  is then called the “resident” concentration. Interestingly when Eq. (1) 
is linear with constant coefficients then fc obeys a similar equation with the boundary 
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condition for cf being simpler than for c  at 0x = . A standard initial condition might be 
 

f 0 at 0c c t= = =  (3) 
 
The boundary condition at x L=  presents some difficulties (Parlange et al. 1992). If 
discontinuity in c is not permitted at the end of the column and there is no dispersion in the 
collector, then f c c=  at x L=  or 
 

0 atc x L
x
∂

= =
∂

 (4) 

 
and this is true as long as the Péclet number e = /P vL D  is not too small, e.g. at least 4 or 
more. Péclet numbers of at least 4 are commonly found except when macropores e.g. 
cracks are present in the column and the “effective” dispersion is dominated by diffusion 
between cracks and the soil matrix surrounding them. In that case, e > 4P  it can be shown 
(Parlange and Starr, 1975; 1978; Parlange, et al. 1982) that taking fc as the solution for a 
semi-infinite column fc ∞  i.e. for L →∞ , leads to a c , from the definition of fc  in Eq. (2), 
which satisfies Eq. (1) with an error of order eexp(- ) << 1P . For instance taking 0f =  and 
scaling time by R , for a semi-infinite column, 
 

0f2 / erfc exp erfc
4 4

x tv vx x tvc c
DDt Dt

− +⎡ ⎤ ⎡ ⎤⎡ ⎤= +⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦
 (5) 

 
then Eq. (2) gives 
 

( )

( )

0

2

f

2

1 exp
4exp erfc

4
erfc

4 4

1 exp
4exp erfc

4
erfc

4 4

L tv
vx L tv v Dtc c c Dt
D DDt L tv L tv

Dt Dt

x tv
vx x tv v DtDt
D DDt x tv x tv

Dt Dt

π

π

∞

⎧ ⎫⎡ ⎤− +
⎪ ⎪⎢ ⎥+⎪ ⎪⎢ ⎥= + −⎨ ⎬⎢ ⎥+ +⎪ ⎪−⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤− +
⎪ ⎪⎢ ⎥+⎪ ⎪⎢ ⎥+ − +⎨ ⎬⎢ ⎥+ +⎪ ⎪−⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

  (6) 

 
derived from the general solution of Eq. (2) 
 

f exp exp
L f

x

cvx vxc c dx
D x D

∞
∞

∂ −
= +

∂∫   (7) 

 
given Eq. (6) when Eq. (5) holds. It is convenient to define c∞  as the solution for c  when 
L →∞ , then we obtain at once 
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[ ]f
( )exp ( ) ( )v x Lc c c x L c x L

D∞ ∞ ∞

−
= + = − =   (8) 

 
Eq. (8) will often be useful in practice when fc ∞  and c∞  are known. For instance for zero 
and first order kinetics (i.e. f  constant or proportional to c ), fc ∞  and c∞  are established in 
closed form (Parlange et al. 1982, 1992; Parlange and Starr, 1878; van Genuchten and 
Alves, 1982) and yield a simple expression for c , with a slight error because fc  is not 
exactly equal to fc ∞ . In particular at x L= , the breakthrough curve is very simply obtained 
by 
 

f( ) ( ) ( )fc x L c x L c x L∞= = = ≈ =   (9) 
 
Not surprisingly the maximum error of Eq. (8) is at x L= . In Table 1 we consider the case 
when e  = 4P , the minimum acceptable value, and the three cases when 

0;  / 0.2;  and / 1f fL v fL vc= = = , which corresponds to no, zero and first order kinetics 
respectively. The maximum error is at time 2 / 4 v t D = and the absolute errors are about 
0.02 in all three cases. 
 

/ 4vL D =  no kinetics zeroth order first order 

f4c  0.6277 0.4788 0.3549 

( )c x L=  exact 0.6091 0.4549 0.3335 

 
Table 1: Solutions of Eq. (8) for no, zero and first order kinetics 

 
The exact values presented in Table 1 are from van Genuchten and Avles (1982) where 
they are tabulated using somewhat complex series solutions.  
 
If the Péclet number 

eP  is very small and dispersion results from molecular diffusion 
between mobile and immobile water, Eq. (1) should not be used by itself and the region of 
immobile water should be taken into account explicitly. This concept may have been first 
introduced by Passioura (1971) for aggregated porous media. The chemical in immobile 
water is a component of ac , and explicitly written as im m im( / ) /c tθ θ ∂ ∂  in Eq. (1), where 

imθ  and mθ  are the water contents in the immobile and mobile regions and imc  is the 
concentration of the chemical in the immobile region. 
 
An additional equation is now required to find imc . If the exchange process between the 
two regions is slow compared to transport processes then the rate limited exchange is often 
modeled by the following equation 
 

im im m im/ ( )c t k c cθ ∂ ∂ = − ,  (10) 
 
where k  is a rate coefficient. Parker and Valocchi (1986), van Genuchten and Dalton 
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(1986) and Brusseau et al. (1994) have discussed various mass transfer processes and their 
models. The other limiting case when the exchange process is rapid would lead to local 
equilibrium although this limit does not seem to hold in practice. Readers are referred to 
Wallach and Parlange (1998; 2000) for a thorough discussion of the exchange processes 
between the two regions. 
 
4. Chemical Reactions 
 
The discussion till now only considered linear equations. If the dispersion term in Eq. (1) 
can be neglected, at least as a first approximation, then the method of characteristics may 
be employed to find solutions of the governing equations. Although the method is very 
general we shall concentrate on a particular case which illustrates the method quite clearly 
and also makes use of results obtained in the previous section. 
 
First consider the case of no adsorption, D  and v  constant and f an arbitrary function of 
c . Barry et al. (1993) solved this case to analyze nitrogen transport and kinetics in soils 
(also see McLaren (1976), Starr et al. (1974), Starr and Parlange (1975) for applications). 
When experimental observations are used to estimate f it is particularly convenient to use 
steady state results. Under steady state, Eq. (1) reduces to, 
 

2

2

dc d cv D f
dx dx

= − . (11) 

 
The method of characteristics ignoring dispersion yields a simple solution 
 

1

( )
g

c

dcx v
f c

= ∫ ,  (12) 

 
where 1g  is a first approximation to the value of c  at 0x = . The effect of dispersion can 
significantly lower the concentration at 0x =  below 0c . Indeed it can be shown that 
ignoring dispersion in the differential results is far less accurate than when ignoring it in the 
boundary condition at 0x =  (Parlange et al. 1982, 1984; Barry et al. 1986). It is also clear 
that ignoring 2 2/d c dx  in Eq. (11) means that we are not considering any boundary 
condition such that with a column of length L , Eq. (4) for instance is irrelevant. Indeed it is 
clear from Eq. (12) that x  is infinite at 0c = , since (0) 0f = . Thus Eq. (12) is relevant for 
a semi-infinite column. As we previously exhibited in the linear case, c  will be close to c∞  
so long as the solution is not in the boundary layer near x L= , which has a thickness of 
order /D v , as shown by Eq. (8). Thus when using experimental data together with Eq. 
(12), it is crucial to check, a posteriori if necessary, that all data of interest are sufficiently 
far from the end of the column. 
 
At the surface condition, Eq. (4) yields 
 

1 0 12 ( )Dg c f g
v

= ,  (13) 
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Clearly the procedure will be valid as long as the correction due to dispersion is small or 
 

2
0 0/ ( ) 1v c D f c >> .  (14) 

 
Brams and McLaren (1974) used Eq. (12) in their analysis but did not correct 1g  and 
used 1 0 g c=  which is far less accurate than Eq. (13). It is now easy to iterate using Eq. (12) 
to estimate 2 2/Dd c dx  in Eq. (11) or, 
 

2 2( )ln
( )( )

g

c

f gdc Dx v
v f cf c

⎡ ⎤
= + ⎢ ⎥

⎣ ⎦
∫ ,  (15) 

 
where 2g is the new concentration at 0x = , or from Eq. (4) 
 

2

2
2 0

2

( )

c g

D f gg c
dfv D
dc =

= −
+

.  (16) 

 
Note that Eq. (15) still holds for a semi-infinite column only. 
 
To estimate the accuracy of this procedure consider the more realistic case of Michaelis-
Menten kinetics when 
 

0( ) f cf c
K c

=
+

, (17) 

 
where 0f  and K  are the limiting rate constant and the saturation constant respectively. 
This function can be introduced easily into Eqs. (12), (13), (15), and (16) and in particular 
 

[ ]
0

1 ln( / )
( )

g

c

dc g c K g c
ff c

= − +∫  (18) 

 
for use in Eqs. (12) and (15). Consider a reasonable example of 0 0/ 10 cmvc f =  and 

0K c= and values of /D v  varying from 0.05 to 5 cm. Hence 2
0 0/ ( )v c Df c  in Eq. (14) 

varies between 400, a very large value, and 4, a moderate value. The values of 0/c c  at 0, 5, 
and 10 cm are obtained numerically (Barry et al. 1993), i.e. they are considered “exact”. 
Then we take the results at 5 and 10 cm and consider them as “observed” and we ask the 
question what are the errors associated with those values if we use them to predict 0 0/vc f  
and 0/k c  when Eqs. (12) and (13) or Eqs. (15) and (16) are chosen. The errors are 
presented in Table 2 and rounded up to the next whole percent. It is interesting to note that 
either Eq. (13) and Eq. (16) produce insignificant errors in the prediction of 

0(0) /c c  as 
either

1 0 2 0 /  or /g c g c , so in practice using the simpler Eq. (13) rather than Eq. (16) is 
justified and recommended. In all cases, Eq. (15) is obviously quite reliable, although not 
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shown in Table 2, the error in 0 /K c  increases rapidly when /   5D v > . Therefore the limit 
of use for Eq. (15) and (16), or (13), is 2

0 0/ ( ) 4v c Df c ≥ . On the other hand the limit of 
usability of Eq. (12) is quite poor, even for 2

0 0/ ( )v c Df c  as high as 40 the estimate of 

0 /K c is not acceptable. This is of course expected, as at least a first order correction due to 
diffusion should be included. More details can be found in Barry et al. (1993). 
 

/D v  0.05 0.5 2.5 5 
0(0)/c c  0.9975 0.9756 0.8902 0.8068 

0(5) /c c  0.7644 0.7482 0.6868 0.6287 

0(10) /c c  0.5659 0.5554 0.5164 0.4803 
Using Eqs. (12) and (13): Relative Errors in % 
0 0/vc f  0 -2   

0/K c  0 7   
Using Eqs. (15) and (16): Relative Errors in % 
0 0/vc f  0 0 2 1 

0/K c  0 0 -3 -3 
 

Table 2: Exact concentrations at 0,5,and 10 cmx = .  
When 0 0 0/  10 cm and /  1vc f K c= = , for various values of /D v . The errors in 

parameters’ estimation are at the concentrations at 5 and 10 cm 
 
- 
- 
- 
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