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Summary 
 
The introduction to finite element method may be very tricky. On the one hand, the 
rigorous foundation of the mathematical concepts requires difficult theorems of 
functional analysis, on the other hand, applications (to fluids for example) need 
sometimes complex finite element spaces. In the 3d case, with a great number of 
unknowns, it is very difficult to produce efficient codes. In this presentation, we prefer 
to concentrate on the fundamental concepts and to illustrate them by simple 
applications. We first present the finite element method in the one dimensional case, 
even if it is, of course, more useful in higher dimensions and complex geometry. This 
allows us to thoroughly explain the computations of element stiffness and mass matrices 
and complete linear systems with different boundary conditions. Then, we present two-
dimensional triangular and iso-parametric quadrilateral elements and we give a general 
idea of the tridimensional case. Numerical integration formulas are detailed in the 
triangular and quadrilatal cases. A quick survey on error estimation and counter 
examples of bad choices of quadrature formulas are finally given. 
 
1. Introduction 
 
The Finite Element Method (F.E.M.) was developed in the late 1950’s to numerically 
solve equations of elasticity and structural mechanics. It was introduced by engineers as 
a generalization of earlier methods used to solve discrete systems. The finite element 
method was based on an analogy between real discrete elements of a structure and small 
parts of a continuum domain, so-called finite elements. In the field of solid mechanics, 
it is nowadays the standard method. Outside this field, the range of applications of the 
finite method has extended to all engineering disciplines. Now this method is applied 
widely. 
 
It has been developed by mathematicians and numerical analysts and has become a 
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general tool for numerical solution of partial differential equations. The finite element 
method is particularly suitable to solve equilibrium or, equivalently, energy 
minimization problems. This method has the big advantage that complicated 
geometries, general boundary conditions and variable material properties can be handed 
easily and in a natural way, whereas finite differences or spectral methods introduce 
artificial complications. In fluid mechanics problems, the finite element method 
competes with the finite volume method which presents the same geometrical flexibility 
and naturally preserves the conservation laws. Modern codes combine both methods, 
finite volume dealing with the conservative part of the equations and finite element with 
the dissipative one. For a mechanical engineering approach and a review of many 
applications of the finite element method, refer to [8]. For a mathematical study and a 
detailed error analysis, refer to [1]. For teaching textbooks, refer to [5] and [6]. At last 
for finite element applications to Naveir-Stokes equations and fluid mechanics, the 
reader will profitably read [4], [7] and [3] for extensions to non-linear problems. 
 
1.4. A Simple One-dimensional Problem 
 
The variational formulation of elliptic differential problems and the equivalent energy 
minimization problem (in the symmetric case) are the key basis of finite element 
methods ( see Variational statements of problems. Variational methods). Once the 
continuous problem is written in variational form, thanks to the Lax Milgram theorem, 
we obtain the existence and uniqueness of the exact solution in Hilbert space H. Then, 
the approximation process begins. The finite element method enables us to build finite 
dimensional spaces (subspaces of H for the so-called conforming methods).The 
approximate solution belongs to this finite dimensional space. It is, in a certain sense, 
the best approximation in this subspace of the exact solution. In contrast with finite 
difference methods where the approximated solution is the vector of discrete nodal 
approximate values, in the finite element method, the approximate solution is a 
continuous (in most cases) function (even if it is, finally, defined by its nodal values). 
This is one of the big advantages of finite element methods. We can apply to the 
approximate solution the same operators as we applied to the exact solution. 
 
Let us begin by a simple one-dimensional problem to introduce the basic concepts of the 
finite element method (F.E.M). An elastic cord fixed at both ends is subject to a vertical 
load per unit length f. The vertical displacement u is real function, the solution of  
 

( ) ( ) [ ]
( ) ( )0 0

′′⎧− = ∀⎪
⎨

= =⎪⎩

u x f x x L

u u L

∈ 0,

0
  (0.1) 

 
where L is the length of the cord. 
This very simple homogenous Dirichlet problem can be written in variational form. We 
proceed as in Variational statements of problems. Variational methods. to obtain 
 

( ) ( )
Find such that ∀⎧⎪
⎨

=⎪⎩

u V v V

u,v L v

∈ ∈
00

A
  (0.1) 
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where the space ( ) ,H=0V Ω1
0  with [ ]0, ,= LΩ  and the bilinear form A  and the linear 

form L are defined by: 
 

( ) ( ) ( ) ( ) ( ) ( )= =∫ ∫
L Ldu dv

u,v x x dx, L v f x v x dx
dx dx0 0

A  (0.2) 

 
As the bilinear form is symmetric, the problem is equivalent to the following energy 
minimization: 
 

( ) ( ) ( ) ( )
2

0

which minimizes

1
2

Find⎧
⎪
⎨ ⎛ ⎞= −⎪ ⎜ ⎟

⎝ ⎠⎩ ∫ ∫
L L

u V

dv
E v x dx f x v x dx

dx

∈ 0

0

  (0.3) 

 
1.5. Approximation Process with Linear Elements 
 
This is the starting point of the approximation process. Then F.E.M. can be simply 
described as a process of constructing finite dimensional subspaces ,hV0  of .V0  The 
approximate solution will be found in five steps. 
 
1. Build a mesh on the domainΩ . The domain  Ω  is subdivided into a finite number of 
simple subsets, called finite elements. In this first one-dimensional case, elements are 
the N subintervals ,i i−⎡ ⎤⎣ ⎦x x1  for i = N1,... .    
 

 
 

Figure: 1. One dimensional mesh 
 
2. Choose a simple function space to represent the approximate solution locally on 
each element. Here we will choose linear polynomials. Then define the global finite 
dimensional subspace  ,hV0 based on the mesh by considering the continuous functions 
satisfying the Dirichlet boundary conditions and whose restrictions on each element are 
linear polynomials. Approximate solutions of the following kind are obtained: 

 

 
 

Figure: 2. A function of the discrete space ,hV0  
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A Lagrangian basis { }iw of this space is the set of “hat” functions defined by  
 

( )i i i= ∀ = − ∀ = −j jw x N j N1, 1 and  1, 1δ  (0.4) 

 

 
 

Figure:3. A basis function 
 
Any function h 0,hv V∈  can be represented by: 
 

( ) ( )
1

i N

i i
i

= −

=
= ∑hv x v w x

1
  (0.5) 

 
where ( ).i i= hv v x The coefficients iv  are nothing but the nodal values of hv . 
 
3. Project the continuous problem on the finite dimensional subspace ,hV0 . The 
following discrete problem will be solved: 
 

( ) ( ),

Find such that ∀⎧⎪
⎨

=⎪⎩

h ,h h ,h

h h h

u V v V

u v L v

∈ ∈0 0

A
  (0.6) 

 
This problem is equivalent to the linear system: 
 

( ) ( )

Find , ,... such that

,
N

i i

i−

= −

=

∀ = −⎧
⎪
⎨

=⎪
⎩
∑

N

j

j j
j

u u u N

w w u L w

1 2 1

1

1

1, 1

A
  (0.7) 

 
4. Compute the matrix and the right hand side coefficients of this linear system. This is 
done by splitting the integrals into contributions from each element. On each element 
(here intervals ,i i−⎡ ⎤⎣ ⎦x x1 ), the basis functions iw  reduce to linear polynomials. That 
makes the computations very easy. 
 
After elementary calculations are performed, the resulting linear system is obtained by 
an assembling process. 
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5. Finally the linear system is solved using one of the methods described in Solution of 
systems of linear algebraic equations. 
 
1.6. Computation of Matrix Coefficients 
 
Let us give some details on the practical computation of matrix coefficients in this 
simple case. The computation is done by assembling the contributions of each element 
 

, fori i i i−= =⎡ ⎤⎣ ⎦T x x N1 1,... . 
 
The coefficients 
 

( ) ( ) ( ),i i iA ′ ′= = ∫
L

j j jw w w x w x dx
0

A  

 
of the global matrix A are obtained by adding elementary contributions: 
 

( ) ( )
N

i iA
−

=

=

′ ′= ∑ ∫ k
k

k x
j jx

k

w x w x dx
11

.  (0.8) 

 
Let us consider, for example the element , , .i i i−= ⎡ ⎤⎣ ⎦T x x1 There are only two non zero 
basis functions on ,iT  namely i−w 1  and iw  
 

i i

i i
i i

i i i i

−
−

− −

− −
= =

− −T T

x x x x
w w

x x x x
1

1
1 1

  (0.9) 

 

i ii i
i i i i

−
− −

−′ ′= =
− −T Tw w

x x x x1
1 1

1 1   (0.10) 

 
Thus the contribution of iT  will affect only the four following global matrix 
coefficients: , ,i i i i i,iA A A− − −1, 1 1, and .i,iA −1  
 
It is easy to compute these contributions. They are usually written in a matrix form, 
leading to the so called “element matrix”: 

i i

i i i
Elem

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

e e

e e

1,1 1,2

2,1 2,2

  (0.11) 

where  
 

( )
( )

2
2

i i

i i

i
i

i ii i
− −

−
−−

′= = =
−−

∫ ∫
x x

x x
e w x dx dx

x xx x1 1
1,1 1

11

1 1  (0.12) 
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( ) ( )
( )2

i i

i i

i i
i i

i ii i
− −

−
−−

′ ′= = = − = −
−−

∫ ∫
x x

x x
e e w x w x dx dx

x xx x1 1
1,2 2,1 1

11

1 1  (0.13) 

 

( )
( )2

i i

i i

i
i

i ii i
− −

−
−−

′= = =
−−

∫ ∫
x x

x x
e w x dx dx

x xx x1 1

2
2,2 1

11

1 1  (0.14) 

 
and then 
 

1
1

i i i i

i i i i

i
i i

Elem − −

− −

−
− −

−
−− −

⎛ ⎞ −⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ −− ⎝ ⎠⎝ ⎠

x x x x

x x x x
x x

1 1

1 1

1 1

1 1
1

11
1

 (0.15) 

 
The same kind of computational technique is used to obtain the right hand side of the 
resulting linear system. 
 
2. Other One-dimensional Boundary Problems 
 
We can apply the same process to more general one-dimensional boundary value 
problems. 
 
2.1. The Non-homogeneous Dirichlet Problem 
 
Let us consider the following Dirichlet problem: 
 

( ) ( ) [ ]
( ) ( )
′′⎧− = ∀⎪

⎨
= =⎪⎩

u x f x x L

u u L

∈ 0,

0 α β
  (2.1) 

 
We introduce an auxiliary function u0  such that 
 

( ) ( )0 = =u u L0 0α, β , 
 
and we consider the new unknown function .= −u u u0  Problem (2.1) is then equivalent 
to a homogeneous problem foru . A practical choice for u0  consists in expanding it in 
the finite element basis 
 

= Nu w w0 0 +α β , 
 
where w0  and Nw are the P1-Lagrangian basis functions associated with the boundary 
points =x0  and =Nx L . Thus, u is solution of  
 

( ) ( )
Find such that ∀⎧⎪
⎨

=⎪⎩

u V v V

u,v L v

∈ ∈
00

A
  (2.2) 
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where the bilinear form A  is the same as in the homogeneous case, but the linear form 
L  is now equal to  
 

( ) ( ) ( ) ( ),= −∫
L

L v f x v x dx u v00
A .  (2.3) 

 
Then, the approximation process follows the same lines. 
 
2.2. The Neumann Problem 
 
We consider now the Neumann problem ( )( )0, :c L L∞∈  

( ) ( ) ( ) ( ) [ ]
( ) ( )

, ,′′⎧ − =⎪
⎨

′ ′= =⎪⎩

u x c x u x f x x L

u u L

∈ 0,+

0 α β
  (2.4) 

 
The variational formulation of this problem is: 
 

( ) ( )
Find such that ∀⎧⎪
⎨ =⎪⎩

u V v V

u,v L v

∈ ∈

A
  (2.5) 

 
where, this time, the space ( ) ,H=V Ω1  with [ ]0, ,= LΩ  and the bilinear form A  and 
the linear form L  are defined by: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d= = −∫ ∫
L Ldu dv

u,v x x dx, L v f x v x x v L v
dx dx0 0

+ 0A β α  (2.6) 

 
Remark 2.1 (see Variational statements of problems. Variational methods).  If ≡c ,0  
problem (2.4) is the Neumann problem for the Laplace operator: it is an “ill-posed” 
problem. 
 
Following the same approach as before, the finite dimensional space hV V⊂  is the 
space of continuous, piecewise linear, functions. But, this time, there is no restriction on 
boundary values. The dimension of the discrete space hV  is equal to N +1 : the number 
of nodes of the mesh. The approximate solution reads as follows 
 

( ) ( )
0

i N

i i
i

=

=
= ∑hu x u w x .  (2.7) 

The discrete problem to solve is: 
 

( ) ( )
Find such that ∀⎧⎪
⎨

=⎪⎩

h h h h

h h h

u V v V

u ,v L v

∈ ∈

A
 . (2.8) 

 
Practical computations follow the same lines as above. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTATIONAL METHODS AND ALGORITHMS – Vol. II - Finite Element Method - Jacques-Hervé SAIAC 

 
 

©Encyclopedia of Life Support Systems (EOLSS) 

 
- 
- 
- 
 

 
TO ACCESS ALL THE 35 PAGES OF THIS CHAPTER,  
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx 

 
 
Bibliography 
 
[1] Ciarlet P.G., The Finite Element Method for Elliptic Problems, North Holland (1979) [A reference on 
finite element analysis.].  

[2] George P.L., Automatic mesh generation. Applications to finite element methods, J. Wiley and Sons 
(1991). [A key reference on automatic meshing.]. 

[3] Glowinski R., Numerical Methods for Nonlinear Variational Problems, Springer Verlag (1984) [A 
very useful book on nonlinear problems and industrial applications. The appendix on linear variational 
problems is one of the best introduction of  variational method and  finite element approximation ever 
written.]. 

[4] Giralut V., Raviart P.A., Finite Element Methods for Navier-Stokes Equations, Theory and 
Applications, Springer Verlag (1986) [The reference on finite element analysis for Navier-Stokes 
equations.]. 

[5] Johnson C., Numerical solutions of Partial Differential Equations by the Finite Element Method, 
Cambridge University Press (1987) [A very pedagogical  textbook on finite element concepts]. 

[6] Lucquin B., Pironneau O. Introduction to scientific computing, J. Wiley and Sons (1998) [An easy 
reading but rigorous and exhaustive textbook on numerical methods for solving partial differential 
equations]. 

[7] Pironneau O., Finite Elements for Fluids, J. Wiley and Sons (1989) [The reference on finite element 
application to fluids]. 

[8] Zienkiewicz O.C., Taylor R.L. The Finite Element Method, fourth edition, Mac Graw Hill (1987) [A 
well-known reference on finite element method and applications]. 
 
Biographical Sketch 
 
Jacques-Hervé Saiac is Professor at the Conservatoire National des Arts et Métiers (CNAM) in Paris, 
France.  He graduated from the Ecole Centrale de Paris in 1968 and received his Ph. D. from UPMC Paris 
VI University in 1971.  In 1991, under the direction of Professor Olivier Pironneau, he received the 
Habilitation à diriger des recherches (HDR) diploma in Applied Mathematics from UPMC Paris VI 
University.  His research fields include finite element analysis, optimization methods, numerical 
simulations in Computational Fluid Dynamics and adaptive mesh analysis. 
 

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-04-03-01

