
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - Dynamic Programming - Sniedovich M.

©Encyclopedia of Life Support Systems (EOLSS)

DYNAMIC PROGRAMMING

Sniedovich M.
The University of Melbourne, Parkville, Australia

Keywords: Bellman, curse of dimensionality, decomposition, dynamic programming,
functional equation, invariant embedding, Markovian condition, monotonicity condition,
objective function, optimization, policy, policy iteration, principle of optimality,
recovery procedure, sequential decision process, stage, state, stationary, stochastic
processes, successive approximation, transition function, value iteration

Contents

1. Introduction
2. Preliminary Examples
3. Sequential Decision Processes
4. Decomposition of Objective Functions
5. Functional Equations
6. Policies
7. Algorithms
7.1. Direct Methods
7.2. Successive Approximation
7.2.1. Successive Approximation in the Return Space
7.2.2. Successive Approximation in the Policy Space
7.3. Recovery Procedures
7.3.1. Store-First Approach
7.3.2. On-the-Fly Approach
8. The Principle of Optimality
9. The Curse of Dimensionality
10. Generalizations
11. The Art of Dynamic Programming
11.1. Models
11.2. Algorithms
11.3. Computer Codes (see The Role of Software)
12. Epilogue
Acknowledgment
Glossary
Bibliography
Biographical Sketch

Summary

One of the most common approaches to dealing with complex problems is
decomposition. The basic idea behind this approach is simple and intuitive: a complex
problem is decomposed into sub-problems and the solution to the complex problem is
constructed from the solutions found for the sub-problems. Dynamic programming (DP)
is based on this simple idea, except that it applies it (repeatedly) to the sub-problems as
well. For historical reasons, the conceptual framework of DP is that of an optimization

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - Dynamic Programming - Sniedovich M.

©Encyclopedia of Life Support Systems (EOLSS)

problem cast as a sequential decision problem. That is, in its traditional role DP deals
with situations where a sequence of decisions is to be made so as to optimize a given
function of the decisions variables subject to some constraints imposed on these
variables. In this framework decomposition is achieved by fixing a decision and
considering the (sub) problem associated with the remaining decisions. This leads to a
functional equation stipulating the relationship between the optimal values attained by
the objective functions of the sub-problems. The optimal solution to the original
problem is obtained by solving this functional equation. Needless to say, for this
strategy to make sense and provide an optimal solution to the original problem, the sub-
problems generated by the decomposition scheme must be consistent with the original
problem. This consistency property is captured by what Richard Bellman—the Father
DP—called the principle of optimality, which over the years has become synonymous
with DP.

1. Introduction

In 1952 a young mathematician by the name of Richard Bellman published a very short
article—in fact 4 pages long—entitled On the Theory of Dynamic Programming. In it
Bellman sketched the foundation of a new approach to problem solving—widely known
today as Dynamic Programming (DP). This approach offers practical problem solving
tools in many diverse application areas such as network optimization (see Graph and
Network Optimization), project management, decision analysis (see Decision Trees and
Influence Diagrams), reservoir control, inventory problems, artificial intelligence,
computer science, agriculture, forestry, finance, biology, cutting stock, quality control,
reliability, publishing and text processing, resource allocation, medicine, military and
recreation. This list is not complete.

Although numerous books and articles have been written on DP, the question “What is
DP?” is as relevant today as it was 50 years ago, perhaps even more so. For as Bellman
warned at the outset, although DP is based on extremely basic principles, it is difficult
to capture its essence in a straightforward, rigid, mathematical formalism. Indeed, it is
the opinion of many experts, that a number of important aspects of DP are more art than
science. One of the manifestations of this fact is the popular “learn/teach DP by
example” strategy with regard to DP teaching and learning. This is not to say that it is
difficult to compose a comprehensive, rigorous, formal mathematically oriented
formulation for DP. In fact, this has been done numerous times since the mid-1950s.
What is difficult is to accomplish this and yet keep the formulation simple, easy to grasp
and useful.

As indicated above, Bellman was fully aware of this fact and his first book on DP—
dated 1957—was written with this issue in mind. This, needless to say, attracted a fair
bit of criticism from scholars who argued that Bellman’s formulation of DP was not
rigorous. It is not surprising therefore that attempts have been made in the 1960s and
1970s to develop more rigorous mathematical formulations for DP.

This early chapter in the history of DP is vividly reflected in the present state of the art
and thus naturally has its impact on the present discussion. However, it will be
constructive to begin our guided tour with a rather abstract description of DP:

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - Dynamic Programming - Sniedovich M.

©Encyclopedia of Life Support Systems (EOLSS)

DP is an approach to problem solving utilizing the following meta strategy:

Step 1: Generalize your problem by transforming it into a family of related problems
using one or more features of the problem as parameters.

Step 2: Derive a functional equation relating the solutions to each of these problems to
the solutions of the others.

Step 3: Solve the functional equation.
Step 4: Use the solution to the functional equation to recover a solution to your

particular problem.

As clearly demonstrated by several generations of students all over the world, this is
easier said than done, hence the notion “the art of DP”.

Before we translate the above recipe into something more concrete, it will be instructive
to apply it to four seemingly disparate but representative problems.

2. Preliminary Examples

The objective of the four examples examined in this section is two-fold, namely to
illustrate the above recipe in action and to sketch the general profiles of problems that
DP is usually applied to. With regard to the latter, note that the first example is a
computational problem, the second is a proof problem, the third is a decision problem
and the fourth is an optimization problem. Each problem is defined by a short
description of a given object and a task to be performed in relation to it.

We have purposely chosen the first two problems to be very simple and well known so
as to emphasize that DP is very pervasive and that it is used daily by numerous persons
most of which are not aware of the fact that they use DP.

Example 1:

Given: A list of numbers, 1(,...,)mx x=x .

Task: Compute the sum of the elements of the list.

Step 1: The task is to compute the value of 1 mx x+ +" . Thus, a simple way to
generalize the given problem and create out of it a family of related problems is to
consider the task of computing the partial sums of x. That is, let

1() : , 1, 2, ,nSum n x x n m= + =" … (1)

so that now we have to solve m problems.

Step 2: From the definition of Sum(n) it follows that

1(1) () , 1, 2,..., 1nSum n Sum n x n m++ = + = − . (2)

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - Dynamic Programming - Sniedovich M.

©Encyclopedia of Life Support Systems (EOLSS)

This is a typical DP functional equation.

Step 3: It is very easy to solve the functional equation: set 1(1)Sum x= and then
compute the right-hand side of (2) for 2,3, , 1n m= −… —in this order.

Step 4: The value of interest is Sum(m) and it is obtained as the last item computed in
Step 3 of the above procedure. ♦

Example 2:

Given: An arithmetic series 0 1 2, , ,x x x … such that 0x a= and 1j jx x d+ = + for
0,1,2,3,j = … where a and d are given numbers.

Task: Prove that 37 0 37x x d= + .

Step 1: We generalize the given problem by rephrasing it as follows: Prove that

, 0,1, 2,3,jx a jd j= + = … (3)

Step 2: In this example we are also given the functional equation relating members of
the family of problems under consideration, namely:

1 , 0,1, 2,3,j jx x d j+ = + = … . (4)

Step 3: The proof consists of solving the functional Eq. (4) (by induction on j) showing
that the solution satisfies (3). For j = 0 the functional Eq. (4) yields 1 0x x d= + = a d+ ,
so we conclude that the inductive hypothesis (3) is clearly valid for j = 0. We thus
assume that the inductive hypothesis is valid for 1,2,3, ,j m= … , for some m > 0, and
consider 1j m= + . The functional equation asserts that 1m mx x d+ = + , so utilizing the
inductive hypothesis for j = m, namely mx a md= + we obtain 1mx a md d+ = + + x =

(1)a m d+ + . Hence, the inductive hypothesis is valid for 1j m= + . It is therefore valid
for 0,1,2,3,j = … .

Step 4: From the inductive hypothesis it follows that 37 37x a d= + . ♦

Example 3:

Given: A list 1(,...,)mc c=c of m distinct positive integers and a positive integer C.

Task: Determine whether there is a list 1(,...,)mx x=x of m non-negative integers such
that 1 1 m mx c x c C+ + =" .

Step 1: All that needs to be done to generate a family of related problems out of the

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - Dynamic Programming - Sniedovich M.

©Encyclopedia of Life Support Systems (EOLSS)

given problem is to view the right hand side of the equation, C, as a parameter, call it p,
taking values in the set {0,1,2,..., }P C= . This family of parametric problems can be
stated as follows: given the list c and some p in P, determine whether there is there a list
of non-negative integers 1(,...,)mx x=x such that 1 1 m mx c x c p+ + =" .

Step 2: Let v(p):=“yes” be the (correct) answer to question for the given value of p.
Then it is easy to verify that v(0) =“yes” and that v(p) =“no” for all 0 < p < c(k), where
c(k) = arg min { : 1, 2,..., }jc j m= . It is also not too difficult to conclude that that if p is
an element of P, then v(p)=“yes” if and only if there is some j in : {1,2,..., }M m= such
that v(p – c(j)) =“yes”. Hence,

" " , f 0
" " , f 0<p<c(k)

()
" " , if (()) " " for some j M
"no" , otherwise

yes i p
no i

v p
yes v p c j yes

=⎧
⎪
⎪= ⎨ − = ∈⎪
⎪⎩

 (5)

This is a typical DP functional equation for decision problems.

Step 3: Set v(0) =“yes” and then use (5) to compute the values of v(p) for 1, 2,...,p C=
– in this order.

Step 4: The value of interest is V(C), which we obtain in the last iteration of Step 3. ♦

Example 4: Shortest path problem (see Graph and Network Optimization).

Given: A square matrix t of non-negative numbers representing the direct travel times
between m cities and a pair of cities (s,d). Note that t(i,j) denotes the travel time from
city i to city j along the direct link between these to cities. It is assumed that there is
exactly one direct link between any pair of cities.

Task: Compute the length of the shortest (time-wise) path from city s to city d as well as
the shortest path itself.

Note: it is convenient to let t(j,j) =∞ for all j in M, where M is the set of cities.

Step 1: Let 1, 2,...,j m= be the index representing the cities under consideration and
with no loss of generality assume that the objective is to go from city s=1 to city d=m.
It is also assumed that the duration of a tour is additive: that is the travel time from city
A to city C via city B is equal to (,) (,)t A B t B C+ .

One simple way to generate a family of related problems out of this problem is to view
the destination city, d, as a parameter taking values in the set : {1,2,..., }M m= . The
parametric problem is then: what is the length of the shortest path from city 1 to city j,
for any j in M ? There are m such problems to solve.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - Dynamic Programming - Sniedovich M.

©Encyclopedia of Life Support Systems (EOLSS)

Step 2: Let f(j) denote the length of the shortest path from city 1 to city j. Then clearly,
by definition f(1) = 0. Furthermore, it is not too difficult to verify that for any city j
other than 1 we have

() (,) ()f j t i j f i= + (6)

for some city i in M such that i j≠ .

This is so because by definition f(j) is the length of some path from city 1 to city j.
Hence, for i j≠ the value of f(j) must be equal to the sum of two travel times associated
with some city i j≠ : the travel time from city 1 to city i and the travel time from the
city i to city j. But clearly in order to make the sum as small as possible, it is necessary
to go from city 1 to city i along the shortest path.

For the same reason, it is also clear that city i will satisfy (6) if and only if it will yield
the smallest possible value (over all cities other than j) for the right-hand of (6). Hence,

f (j) = min
i≠ j

t(i, j) + f (i){ },1 ≤ j ≤ m . (7)

This is a typical DP functional equation for optimization problems.

Step 3: Solving this equation can be tricky because there is no apparent order in which
the values of f(j) can be computed. Suffice it to say, however, that in some cases the
solution procedure is simple. For example, in some cases it is easy to label the cities in
such a way that an optimal tour is always “increasing” in the sense that if j is a
successor of node i on the optimal path then I < j. In such cases (7) can be simplified to

{ }() min (,) () ,
i j

f j t i j f i i j m
<

= + ≤ ≤ . (8)

To solve the functional equation, set (1) 0f = and then use (8) to determine the value of
f(j) for 2,3,...,j m= —in this order.

Step 4: The problem of interest is associated with j = m so to determine the length of
the shortest path we have to determine the value of f(m). Furthermore, we also have to
determine the shortest tour itself. The Recovery of optimal solutions will be examined
in the discussion on DP algorithms.

As illustrated by these examples, DP is indeed a “general purpose” approach to problem
solving. Henceforth we shall focus on its usage as an optimization method, namely a
method for solving optimization problems. Furthermore, it will be convenient to
consider first optimization problems of the following form:

z* := opt
x∈Ω

q(x) , Ω ⊆ Dk (9)

where Ω is a real valued function on some non-empty finite set D.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - Dynamic Programming - Sniedovich M.

©Encyclopedia of Life Support Systems (EOLSS)

-
-
-

TO ACCESS ALL THE 42 PAGES OF THIS CHAPTER,
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

Bibliography

Bellman R. (1957). Dynamic Programming, Princeton, NJ: Princeton University Press. [Bellman’s first
book on dynamic programming.]

Bellman R. (1984). Eye of the Hurricane: An Autobiography, Singapore: World Scientific. [Bellman’s
autobiography with many anecdotes on the history and development of dynamic programming.]

Bertsekas D.P. and Tsitsiklis J.N. (1996). Neuro-Dynamic Programming, Belmont, MA: Athena
Scientific. [This book describes an approximation method based on neural networks and dynamic
programming with applications to complex problems of planning, optimal decision making, and
intelligent control.]

Brown T.A. and Strauch R.E. (1965). Dynamic programming in multiplicative lattices, Journal of
Mathematical Analysis and Applications 12, 364–370. [An outline of a dynamic programming approach
to the solution of preference order sequential decision processes.]

Denardo E.V. (1968). Contraction mappings in the theory of dynamic programming, SIAM Review 9,
165–177. [A formal exposition of the use of contraction mappings in the solution of functional equation
of dynamic programming associated with non-truncated sequential decision processes.]

Ibaraki T. (1987). Enumerative Approaches to Combinatorial Optimization, Basel, Switzerland: J.C.
Baltzer AG. [An extensive analysis of dynamic programming as a combinatorial optimization method,
including a comparison with branch and bound.]

Mitten L.G. (1964). Composition principles for synthesis of optimal multistage processes, Operations
Research 12, 414–424. [An approach to dynamic programming based on monotonicity properties of the
objective function.]

Ross S.M. (1983). Introduction to Stochastic Dynamic Programming, New York: Academic Press. [An
introduction to the use of dynamic programming in the context of stochastic sequential decision
processes.]

Sniedovich M. (1992). Dynamic Programming, New York: Marcel Dekker. [Modern interpretation of
Bellman’s conception of dynamic programming, including the principle of optimality.]

Verdu S. and Poor H.V. (1987). Abstract dynamic programming models under commutativity conditions,
SIAM Journal of Control and Optimization 25(4), 990–1006. [Analysis of a dynamic programming
approach to problems that are not optimization problems.]

Biographical Sketch

Moshe Sniedovich is an operations research scholar with research and teaching interests in dynamic
programming, global optimization, interactive computing and modeling and the OR/WWW interface. He
was born in Israel in 1945, where after completing his military service, he obtained a degree in
Agricultural Engineering (Technion, 1968). He then worked for four years as a National Planning
Engineer in the Ministry of Agriculture before commencing his Ph.D. studies at the University of
Arizona. Upon completing his Ph.D. (1976), he spent one year at Princeton University and two years at
the IBM Thomas J. Watson Research Center as a Post Doc. He then worked for ten years at the CSIR in
Pretoria, South Africa. In 1989 he joined the Department of Mathematics at the University of Melbourne,
Australia.

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-05-01-04

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - Dynamic Programming - Sniedovich M.

©Encyclopedia of Life Support Systems (EOLSS)

His publication record consists of one book and more than 80 articles. Currently he is a Vice President
(representing the Asia Pacific region) of the International Federation of Operational Research Societies
(IFORS).

A copy of his full CV can be found at www.ms.unimelb.edu.au/~moshe/.

