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Summary 
 
One of the most common approaches to dealing with complex problems is 
decomposition. The basic idea behind this approach is simple and intuitive: a complex 
problem is decomposed into sub-problems and the solution to the complex problem is 
constructed from the solutions found for the sub-problems. Dynamic programming (DP) 
is based on this simple idea, except that it applies it (repeatedly) to the sub-problems as 
well. For historical reasons, the conceptual framework of DP is that of an optimization 
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problem cast as a sequential decision problem. That is, in its traditional role DP deals 
with situations where a sequence of decisions is to be made so as to optimize a given 
function of the decisions variables subject to some constraints imposed on these 
variables. In this framework decomposition is achieved by fixing a decision and 
considering the (sub) problem associated with the remaining decisions. This leads to a 
functional equation stipulating the relationship between the optimal values attained by 
the objective functions of the sub-problems. The optimal solution to the original 
problem is obtained by solving this functional equation. Needless to say, for this 
strategy to make sense and provide an optimal solution to the original problem, the sub-
problems generated by the decomposition scheme must be consistent with the original 
problem. This consistency property is captured by what Richard Bellman—the Father 
DP—called the principle of optimality, which over the years has become synonymous 
with DP. 
 
1. Introduction 

In 1952 a young mathematician by the name of Richard Bellman published a very short 
article—in fact 4 pages long—entitled On the Theory of Dynamic Programming. In it 
Bellman sketched the foundation of a new approach to problem solving—widely known 
today as Dynamic Programming (DP). This approach offers practical problem solving 
tools in many diverse application areas such as network optimization (see Graph and 
Network Optimization), project management, decision analysis (see Decision Trees and 
Influence Diagrams), reservoir control, inventory problems, artificial intelligence, 
computer science, agriculture, forestry, finance, biology, cutting stock, quality control, 
reliability, publishing and text processing, resource allocation, medicine, military and 
recreation. This list is not complete. 

Although numerous books and articles have been written on DP, the question “What is 
DP?” is as relevant today as it was 50 years ago, perhaps even more so. For as Bellman 
warned at the outset, although DP is based on extremely basic principles, it is difficult 
to capture its essence in a straightforward, rigid, mathematical formalism. Indeed, it is 
the opinion of many experts, that a number of important aspects of DP are more art than 
science. One of the manifestations of this fact is the popular “learn/teach DP by 
example” strategy with regard to DP teaching and learning. This is not to say that it is 
difficult to compose a comprehensive, rigorous, formal mathematically oriented 
formulation for DP. In fact, this has been done numerous times since the mid-1950s. 
What is difficult is to accomplish this and yet keep the formulation simple, easy to grasp 
and useful. 

As indicated above, Bellman was fully aware of this fact and his first book on DP—
dated 1957—was written with this issue in mind. This, needless to say, attracted a fair 
bit of criticism from scholars who argued that Bellman’s formulation of DP was not 
rigorous. It is not surprising therefore that attempts have been made in the 1960s and 
1970s to develop more rigorous mathematical formulations for DP. 

This early chapter in the history of DP is vividly reflected in the present state of the art 
and thus naturally has its impact on the present discussion. However, it will be 
constructive to begin our guided tour with a rather abstract description of DP: 
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DP is an approach to problem solving utilizing the following meta strategy: 

Step 1:  Generalize your problem by transforming it into a family of related problems 
using one or more features of the problem as parameters. 

Step 2: Derive a functional equation relating the solutions to each of these problems to 
the solutions of the others. 

Step 3: Solve the functional equation. 
Step 4: Use the solution to the functional equation to recover a solution to your 

particular problem. 

As clearly demonstrated by several generations of students all over the world, this is 
easier said than done, hence the notion “the art of DP”. 

Before we translate the above recipe into something more concrete, it will be instructive 
to apply it to four seemingly disparate but representative problems. 

2. Preliminary Examples 

The objective of the four examples examined in this section is two-fold, namely to 
illustrate the above recipe in action and to sketch the general profiles of problems that 
DP is usually applied to. With regard to the latter, note that the first example is a 
computational problem, the second is a proof problem, the third is a decision problem 
and the fourth is an optimization problem. Each problem is defined by a short 
description of a given object and a task to be performed in relation to it. 

We have purposely chosen the first two problems to be very simple and well known so 
as to emphasize that DP is very pervasive and that it is used daily by numerous persons 
most of which are not aware of the fact that they use DP. 

Example 1: 

Given:  A list of numbers, 1( ,..., )mx x=x . 

Task: Compute the sum of the elements of the list. 

Step 1: The task is to compute the value of 1 mx x+ +" . Thus, a simple way to 
generalize the given problem and create out of it a family of related problems is to 
consider the task of computing the partial sums of x. That is, let  

1( ) : , 1, 2, ,nSum n x x n m= + =" …  (1) 

so that now we have to solve m problems. 

Step 2: From the definition of Sum(n) it follows that  

1( 1) ( ) , 1, 2,..., 1nSum n Sum n x n m++ = + = − . (2) 
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This is a typical DP functional equation. 

Step 3: It is very easy to solve the functional equation: set 1(1)Sum x=  and then 
compute the right-hand side of (2) for 2,3, , 1n m= −… —in this order. 

Step 4: The value of interest is Sum(m) and it is obtained as the last item computed in 
Step 3 of the above procedure. ♦ 

Example 2: 

Given:  An arithmetic series 0 1 2, , ,x x x …  such that 0x a=  and 1j jx x d+ = +  for 
0,1,2,3,j = …  where a and d are given numbers. 

Task:  Prove that 37 0 37x x d= + . 

Step 1: We generalize the given problem by rephrasing it as follows: Prove that  

, 0,1, 2,3,jx a jd j= + = …  (3) 

Step 2: In this example we are also given the functional equation relating members of 
the family of problems under consideration, namely: 

1 , 0,1, 2,3,j jx x d j+ = + = … . (4) 

Step 3: The proof consists of solving the functional Eq. (4) (by induction on j) showing 
that the solution satisfies (3). For j = 0 the functional Eq. (4) yields 1 0x x d= +  = a d+ , 
so we conclude that the inductive hypothesis (3) is clearly valid for j = 0. We thus 
assume that the inductive hypothesis is valid for 1,2,3, ,j m= … , for some m > 0, and 
consider 1j m= + . The functional equation asserts that 1m mx x d+ = + , so utilizing the 
inductive hypothesis for j = m, namely mx a md= +  we obtain 1mx a md d+ = + + x = 

( 1)a m d+ + . Hence, the inductive hypothesis is valid for 1j m= + . It is therefore valid 
for 0,1,2,3,j = …  . 

Step 4: From the inductive hypothesis it follows that 37 37x a d= + . ♦ 

Example 3:  

Given: A list 1( ,..., )mc c=c  of m distinct positive integers and a positive integer C. 

Task: Determine whether there is a list 1( ,..., )mx x=x  of m non-negative integers such 
that 1 1 m mx c x c C+ + =" . 

Step 1: All that needs to be done to generate a family of related problems out of the 
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given problem is to view the right hand side of the equation, C, as a parameter, call it p, 
taking values in the set {0,1,2,..., }P C= . This family of parametric problems can be 
stated as follows: given the list c and some p in P, determine whether there is there a list 
of non-negative integers 1( ,..., )mx x=x  such that 1 1 m mx c x c p+ + =" . 

Step 2: Let v(p):=“yes” be the (correct) answer to question for the given value of p. 
Then it is easy to verify that v(0) =“yes” and that v(p) =“no” for all 0 < p < c(k), where 
c(k) = arg min { : 1, 2,..., }jc j m= . It is also not too difficult to conclude that that if p is 
an element of P, then v(p)=“yes” if and only if there is some j in : {1,2,..., }M m=  such 
that v(p – c(j)) =“yes”. Hence, 

" " , f  0
" " , f  0<p<c(k)

( )
" " , if  ( ( )) " "  for some j M
"no" , otherwise

yes i p
no i

v p
yes v p c j yes

=⎧
⎪
⎪= ⎨ − = ∈⎪
⎪⎩

 (5) 

This is a typical DP functional equation for decision problems. 

Step 3: Set v(0) =“yes” and then use (5) to compute the values of v(p) for 1, 2,...,p C=  
– in this order. 

Step 4: The value of interest is V(C), which we obtain in the last iteration of Step 3. ♦ 

Example 4: Shortest path problem (see Graph and Network Optimization). 

Given: A square matrix t of non-negative numbers representing the direct travel times 
between m cities and a pair of cities (s,d). Note that t(i,j) denotes the travel time from 
city i to city j along the direct link between these to cities. It is assumed that there is 
exactly one direct link between any pair of cities. 

Task: Compute the length of the shortest (time-wise) path from city s to city d as well as 
the shortest path itself. 

Note: it is convenient to let t(j,j) =∞ for all j in M, where M is the set of cities. 

Step 1: Let 1, 2,...,j m=  be the index representing the cities under consideration and 
with no loss of generality assume that the objective is to go from city s=1 to city d=m. 
It is also assumed that the duration of a tour is additive: that is the travel time from city 
A to city C via city B is equal to ( , ) ( , )t A B t B C+ . 

One simple way to generate a family of related problems out of this problem is to view 
the destination city, d, as a parameter taking values in the set : {1,2,..., }M m= . The 
parametric problem is then: what is the length of the shortest path from city 1 to city j, 
for any j in M ? There are m such problems to solve. 
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Step 2: Let f(j) denote the length of the shortest path from city 1 to city j. Then clearly, 
by definition f(1) = 0. Furthermore, it is not too difficult to verify that for any city j 
other than 1 we have 

( ) ( , ) ( )f j t i j f i= +  (6) 

for some city i in M such that i j≠ . 

This is so because by definition f(j) is the length of some path from city 1 to city j. 
Hence, for i j≠  the value of f(j) must be equal to the sum of two travel times associated 
with some city i j≠ : the travel time from city 1 to city i and the travel time from the 
city i to city j. But clearly in order to make the sum as small as possible, it is necessary 
to go from city 1 to city i along the shortest path. 

For the same reason, it is also clear that city i will satisfy (6) if and only if it will yield 
the smallest possible value (over all cities other than j) for the right-hand of (6). Hence,  

f (j) = min
i≠ j

t(i, j) + f (i){ },1 ≤ j ≤ m . (7) 

This is a typical DP functional equation for optimization problems. 

Step 3: Solving this equation can be tricky because there is no apparent order in which 
the values of f(j) can be computed. Suffice it to say, however, that in some cases the 
solution procedure is simple. For example, in some cases it is easy to label the cities in 
such a way that an optimal tour is always “increasing” in the sense that if j is a 
successor of node i on the optimal path then I < j. In such cases (7) can be simplified to  

{ }( ) min ( , ) ( ) ,
i j

f j t i j f i i j m
<

= + ≤ ≤ . (8) 

To solve the functional equation, set (1) 0f =  and then use (8) to determine the value of 
f(j) for 2,3,...,j m= —in this order. 

Step 4: The problem of interest is associated with j = m so to determine the length of 
the shortest path we have to determine the value of f(m). Furthermore, we also have to 
determine the shortest tour itself. The Recovery of optimal solutions will be examined 
in the discussion on DP algorithms.  

As illustrated by these examples, DP is indeed a “general purpose” approach to problem 
solving. Henceforth we shall focus on its usage as an optimization method, namely a 
method for solving optimization problems. Furthermore, it will be convenient to 
consider first optimization problems of the following form: 

z* := opt
x∈Ω

q(x) , Ω ⊆ Dk  (9) 

where Ω is a real valued function on some non-empty finite set D. 
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