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Summary 
 
This chapter presents a survey on scheduling models and some of their applications 
(project scheduling, machine scheduling and timetabling). All these models have in 
common that certain activities requiring some scarce resources have to be planned over 
the time. Depending on the complexity of the problems, different solution methods are 
presented. 
 
1. Introduction 
 
Scheduling is concerned with the allocation of limited resources to activities over time. 
The activities may be tasks in a construction project, operations in a production process, 
lectures at the university, and so on. The resources may be workers, machines, lecturers, 
and so on. General scheduling models will be introduced and specific applications like 
project scheduling, machine scheduling, and timetabling will be discussed. 
 
Methods for solving scheduling problems depend on the computational complexity. For 
project and machine scheduling problems, a sophisticated classification scheme has 
been introduced. Such a scheme for scheduling problems is briefly described and 
polynomial solvable and NP -hard problems are introduced. Finally, some methods to 
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cope with NP -hard scheduling problems are described. 
 
2. General Scheduling Models 
 
A general scheduling problem is the resource-constrained project scheduling problem 
(RCPSP) which can be formulated as follows: 
 
Given are n activities (tasks, jobs, operations, lectures) j = 1, …, n and r (renewable) 
resources k = 1, …, r. Rk units of resource k are available in each time period [t, t + 1[ 
for t = 0, …, T − 1, where T denotes a given time horizon. Activity j must be processed 
for pj time units without interruption. Thus, if Sj denotes the starting time of activity j, it 
completes at time Cj = Sj + pj. During this time period [Sj, Cj[ a constant amount of rjk 
units of resource k (k = 1, …, r) is occupied. Furthermore, precedence constraints 
i j→  are defined between certain activities i, j. The meaning of i j→  is that activity j 
cannot start before activity i is completed, i.e. i i jS p S+ ≤  must hold. A schedule S = 
(Sj) is defined by the starting times Sj of all activities. S is called feasible if 
 
• in each time period [t, t + 1[  the total resource demand for each resource k is less 

than or equal to the availability Rk, and, 
• the given precedence constraints are satisfied. 
 
One has to find a feasible schedule S such that the makespan 
 

max
1 1

: { } { }max max
n n

j j j
j j

C C S p
= =

= = +   

 
is minimized. 
 
There are several possible ways to add constraints or to generalize the RCPSP. 
 
Time-dependent resource profiles  
 
Instead of constant availabilities Rk the availability of resource k may be given by a 
function Rk(t) depending on the periods [t, t + 1[. This includes the nonavailability of 
resource k if Rk(t) = 0 for certain t-values. One has to find a feasible schedule within the 
time horizon [0, T ]. If such a schedule exists, one has to find a feasible schedule which 
minimizes the makespan. A resource k with ( ) { }0, 1kR t ∈  is called disjunctive, 
otherwise it is called cumulative. 
 
Example 1 
 
Consider an instance of a project with n = 6 activities and r = 2 resources, precedence 
constraints 1 4 5, 2 3→ → →  and the following data 
 

j 1 2 3 4 5 6 
pj 2 2 3 2 2 4 
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rj1 1 0 1 0 1 0 

rj2 1 2 3 2 4 2 

 
Figure 1 shows the time-dependent resource profiles and represents a feasible schedule 
by the corresponding Gantt chart. This schedule does not minimize the makespan 
because by moving activity 3 two units to the right and scheduling activity 6 between 
activity 1 and activity 3 a feasible schedule with smaller makespan is obtained. 

 
Figure 1: A feasible schedule 

 
Preemptions  
 
The assumption that each activity j must be processed within an interval [Sj, Sj + pj[ may 
be relaxed by allowing preemptions. Preemption of an activity means that processing 
may be interrupted and resumed at a later time. In this case, preemptions and 
continuations of activities are allowed at integer times only. 
 
Parallelity constraints  
 
Two activities may be forced to be processed in parallel for at least one time unit. 
 
Minimal and maximal time-lags  
 
A precedence relation i j→  may be replaced by a start-start relation of the form Si + dij 
≤ Sj where dij is an arbitrary integer number. The interpretation of this relation depends 
on the sign of dij. If dij ≥ 0, then activity j cannot start before dij time units after the start 
of activity i. This means that activity j does not start before the starting time of activity i 
and dij is a minimal distance between both starting times (Figure 2(a)). If on the other 
hand, dij < 0, then the earliest start of activity j is −dij time units before the start of 
activity i, i.e. activity i cannot start more than −dij time units later than the starting time 
of activity j. If Sj ≤ Si this means that −dij is a maximal distance between both starting 
times (Figure 2(b)). 
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Such relations are very general timing relations between activities. For example, with dij 
= pi it is equivalent to the precedence relation i j→ . More generally, if there should be 
a minimal time distance of lij units between the completion of activity i and the start of 
activity j, then Si + pi + lij ≤ Sj. If Si + pi + lij ≤ Sj and Sj − uij − pi ≤ Si hold where 0 ≤ lij ≤ 
uij, then the time between the completion time of activity i and the starting time of 
activity j must be at least lij but no more than uij. This includes the special case 0 ≤ lij = 
uij where activity j must start exactly lij time units after the completion of activity i. 
 

 
 

Figure 2: Minimal and maximal time-lags. 
 
Separating times between activities  
 
Given two activities i and j, the condition Si + dij ≤ Sj may be replaced by the weaker 
condition that Si + dij ≤ Sj or Sj + dji ≤ Si has to be satisfied. If dij = pi + l and dji = pj + l 
with l ≥ 0, then between the completion time of one of the two activities i, j and the 
starting time of the other activity a minimal separating time of l time units has to be 
respected. 
 
Bounding restrictions  
 
Let B be a set of activities and U be a set of time periods. Then it may be required that 
the activities in B are processed for at least l and for at most u time units within the time 
periods defined by U, where l and u are non-negative integers with l ≤ u. The settings l 
= 0 or u = ∞ impose no restriction. 
 
Multi-modes  
 
In the multi-mode case, a set jΜ  of modes (processing alternatives) is associated with 
each activity j. The processing time of activity j in mode m is given by pjm and per 
period usage of renewable resource k is given by rjkm. Furthermore, so-called non-
renewable resources may be given in the multi-mode case. While for the renewable 
resources the capacity is limited for each time period (like machines, people), the non-
renewable resources are capacitated over the whole time horizon (like money, energy) 
and are consumed by the activities. One has to assign a mode to each activity and to 
schedule the activities in the assigned mode. 
 
Other objective functions  
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Besides the objective of minimizing the makespan { }max
1

: max
n

j
j

C C
=

=  one may consider 

other objective functions f(C1, …, Cn) depending on the completion times of the 

activities. Examples are the total flow time 
1

n

j
j

C
=
∑  or more generally the weighted 

(total) flow time 
1

n

j j
j

w C
=
∑ . Other objective functions depend on due dates dj which are 

associated with the activities. With the lateness Lj := Cj − dj, the tardiness Tj := max{0, 

Cj − dj} and the unit penalty 
0 if 

:
1 otherwise

j j
j

C d
U

≤⎧⎪= ⎨
⎪⎩

 the objective functions 
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n

j j
j
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may be defined. All these objective functions are regular, i.e. monotone non-decreasing 
functions of the completion times Cj. Other even nonregular objective functions are 
possible. In connection with project scheduling problems also objectives concerning 
resource leveling or resource investment are common. In this case, the resource 
capacities are not given, but have to be determined (inducing some additional costs). 
 
3. Applications 
 
The basic models introduced in the previous section cover a wide range of applications. 
These applications are characterized on one side by special characteristics of the basic 
model. On the other side, special features and additional restrictions may be added to 
the basic model. In this section three of the most important applications, namely project 
scheduling, machine scheduling, and timetabling are discussed. 
 
3.1. Project Scheduling 
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Scheduling of projects has many faces, e.g. the design of production facilities, 
construction or maintenance projects, new product development and introduction, 
installation of computer hardware or software, etc. Different models and solution 
methods to solve the corresponding scheduling problems have been developed. 
 
As previously described, a project consists of a set of activities, a set of resources and 
precedence relations i j→  between some activities. It is convenient to introduce a 
dummy starting-activity 0 and a dummy end-activity n + 1 requiring no resources with 
processing times p0 = pn+1 = 0. Furthermore, 0 1j n→ → +  holds for all regular 
activities j = 1, …, n. Associated with a project is an acyclic directed graph G = (V, A) 
in which the nodes j ∈ V are the activities and the arc set A represents the set of all 
precedence relations i j→ . The project is defined by this graph G, the resource 
availabilities Rk, and the data pj, rjk of all activities j. 
 
If Rk = ∞ for all resources k, i.e. if there are no resource restrictions, the earliest starting 
time estj of each activity j can be calculated efficiently by computing the length lj of a 
longest path from the starting activity 0 to activity j in the directed graph G = (V, A). 
The length of a (directed) path P in G is the sum of all processing times of activities in 
P, the last one excluded. It is easy to show that S = (Sj) with Sj = lj for all activities j is a 
feasible schedule. A longest path from 0 to n + 1 is called a critical path. The length ln+1 
of a critical path is equal to the minimal makespan if there are no resource restrictions. 
In the general RCPSP (with resource restrictions), the values lj are only lower bounds 
for the starting times Sj of the activities j. Symmetrically, the length qj of a longest path 
from activity j to the end-activity n + 1 can be calculated. Then, T − qj is an upper bound 
for the latest starting time lstj of j in any feasible schedule with makespan Cmax ≤ T. To 
find a schedule for the RCPSP which minimizes the makespan is a more difficult 
problem. 
 
Example 2 
 
In Figure 3, a small project with n = 4 activities and sufficient resources (i.e. Rk = ∞ for 
all resources k) is defined. A corresponding critical path is 0 1 3 5→ → →  with length 
l5 = 14. Furthermore, the earliest and latest starting times estj and lstj are listed for T = l5 
= 14. 

 
 

Figure 3: Earliest and latest starting times for a project with n = 4 
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