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Summary 
 
In this chapter we present classical methods for the solution of large-scale integer, 
optimization problems. Among them are LP relaxations and cutting planes, Lagrangian 
relaxation, Dantzig-Wolfe and Benders’ decomposition as well as ideas from lifting and 
projection. We also discuss some modeling issues and their influence on the solvability 
of some large-scale problems. 
 
1. Introduction 
 
Optimization deals with the problem of minimizing/maximizing a certain objective 
subject to some set of side constraints. Such problems appear in everyone’s daily life, 
for instance, when one tries to go from A to B by plane, train, or car as fast as possible 
or when one tries to buy some special goods available at different stores as cheap as 
possible. Optimization problems are mathematically modeled by introducing variables 
reflecting the options/quantities to be determined and by expressing the objective and 
the side constraints by functions defined on the domains of the variables. Depending on 
the characteristics of these functions, one speaks of linear or non-linear optimization 
problems. If some or all variables are required to be integer the prefix ‘integer’ is added. 
In this chapter we restrict our discussion to linear and integer linear optimization 
problems, i. e., to optimization problems where the objective function and the set of side 
constraints are linear functions and where some or all variables must be integers. Such 
problems are expressed in the following form 
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where A ∈ m n×\ , c ∈ n\ , b ∈ m\ and p ∈ {0, ..., n}. If p equals zero, (1) is called a 
linear program, or LP for short, if p = n we speak of a (pure) integer linear program 
(IP), and in all other cases of a mixed integer program (MIP). MIPs are a powerful tool 
to model many real-world, optimization problems. For instance, with 0/1 variables, i. e., 
integer variables that are restricted to take values zero or one, decisions can be modeled. 
For example, do we produce product i (yes or no), do we go from A to B by train (yes or 
no), or do we open a facility at location i (yes or no)? For these kinds of questions, we 
introduce a variable which we set to one, if we say ’yes’ and which we set to zero, if we 
say ’no’. The main source of 0/1 linear programs comes from combinatorial 
optimization problems (see Combinatorial Optimization and Integer Programming). 
 
The application areas in which MIPs occur are huge, ranging from telecommunication, 
VLSI-design, production and energy planning to problems in traffic and transport or 
scheduling. And the number of applications is still increasing. 
 
In this chapter, we concentrate on large-scale MIPs. The term ’large-scale’ is relative. 
Its meaning changes with time. What has been considered ‘large-scale’ a couple of 
years ago is now no longer large-scale. Consider, for instance, the traveling salesman 
problem (TSP), the problem of determining a minimal tour through a given number of 
cities. In the fifties, a TSP through 49 cities in the US (which corresponds to 1176 
variables in the standard IP formulation) has been considered large-scale, today the 
world record of solving a TSP is 13 509 cities (or 91 239 786 variables). An interesting 
note is that the method that has been used to solve the problem to optimality at that time 
is basically the same as the one used today, although various new insights and 
theoretical results improved this method substantially. 
 
In addition, ’large-scale’ does not only depend on the number of variables or 
constraints. Very often, problems are considered ‘large-scale’ even if these numbers are 
moderate, but contain certain structures that are considered difficult for current 
methods. Therefore we focus in this chapter on methods that have been used and are 
still used to solve problems considered large rather than on the presentation of some 
specific large-scale models and their solution techniques. 
 
The basic idea of all methods is to get rid of the part of the problem that makes it 
difficult. The methods differ in which parts to delete and in the way to reintroduce the 
deleted parts. In Section 2, we consider linear programming relaxations. Here the 
integrality constraints on the variables are deleted and the resulting linear program is 
strengthened by cutting planes. In Section 3, part of the constraint matrix is deleted and 
put into the objective function attached with some penalties. In Section 4, we discuss 
decomposition methods, in particular Dantzig-Wolfe and Benders’ decomposition. 
These methods also delete part of the constraint matrix, reformulate this part and 
reintroduce the reformulated part into the constraint matrix. So far, we assumed that the 
problem formulation of (1) is given. However, the one and the same problem can often 
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be modeled in different ways and the methods discussed in Sections 2 through 4 solve 
sometimes one formulation better than others. In Section 5, we discuss some 
reformulation techniques, among others aggregation and projection, and show their 
influence on the solution quality for some examples. 
 
2. LP Relaxations 
 
If we relax the integrality constraints in (1) we obtain the so-called linear programming 
relaxation of (1): 
 

 
min
. .

,

T

n

c x
s t Ax b

x

≤

∈\

 (2) 

 
For the solution of linear programs polynomial and efficient methods are known (see 
Linear Programming). In case the optimal LP solution x* is integral, we solved (1). 
Otherwise there must be some inequality (called cutting plane) that separates x* from PI 
= conv({x ∈ n p−]  × p\  | Ax ≤ b}). The problem of finding such inequalities is called 
separation problem. If we find such an inequality we strengthen the LP relaxation by 
adding this inequality to the LP and continue. Either we find an optimal solution this 
way or, if we do not find further inequalities and the optimal LP solution is still 
fractional, we embed the whole procedure in an enumeration scheme. Details of this so-
called cutting plane or branch-and-cut method can be found in Combinatorial 
Optimization and Integer Programming. 
 
The key for the success of this method is to find/know good cutting planes for the 
polyhedron under consideration. In the chapter Combinatorial Optimization and Integer 
Programming such inequalities are presented, mainly for 0/1 polytopes resulting from 
applications in combinatorial optimization. We supplement this approach by 
representing some of the inequalities that are helpful for mixed integer problems, i. e., 
inequalities that combine integer with continuous variables. We first discuss ways of 
generating, cutting planes independent of any problem structure. We then look at MIPs 
with some local structure. 
 
2.3 General Cutting Planes 
 
In the chapter Combinatorial Optimization and Integer Programming one particular 
class of inequalities which can be applied independent of any problem structure has 
already been discussed for pure integer programs, namely Gomory cuts. Consider again 
the situation discussed there, where we are given an integer program max{cT x : Ax = b, 
x ∈ n

+] } and an optimal LP solution *
Nx = 0 and *

Bx  = 1
BA− b – 1

BA− AN
*
Nx  where B ⊆ {1, 

..., n}, |B| = m, and N = {1, ..., n}\ B. Consider an index i ∈ B with *
ix  ∉ ] . We use the 

following abbreviations ja = 1
iA−
i jAi , b  = 1

iA−
i b, fj = f( ja ), f0 = f(b ), where f(α) = α – 

⎣α⎦ and ⎣α⎦ is the largest integer less than or equal to α ∈ \ . Here Ai· denotes the i–th 
row of matrix A and A·j the j–th column. From the fact 
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 1 1
B B N NA b A A x− −− ∈]  (3) 

 
we derive the Gomory cut, (see Combinatorial Optimization and Integer Programming) 
 
 0j j

j N
f x f

∈
≥∑  (4) 

 
It is valid for PI = conv{x ∈ n

+] :Ax = b} and cuts off x*. This inequality is no longer 
valid if continuous variables are involved, because adding integer multiples to 
continuous variables is no longer possible. For instance, 1 1

1 23 3
2x x+ − ∈]  with x1 ∈ 

+] , x2 ∈ +\ has a larger solution set than 13+1
3x1 ∈ ] . Nevertheless, it is possible to 

derive valid inequalities using the following disjunctive argument. 
 
Observation 1 
 
Let (ak)T x ≤ αk be a valid inequality for a polyhedron Pk for k = 1, 2. Then, 
 

1 2 1 2

1
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≤∑  (5) 

 
is valid for both P1 ∪ P2 and conv(P1 ∪ P2). 
 
This observation, applied in different ways, yields valid inequalities for the mixed 
integer case. We present three methods that are all more or less based on Observation 1. 
 
Gomory’s Mixed Integer Cuts 
 
Consider again the situation in (3). Expression (3) is equivalent to ∑ j∈N j ja x =f0 + k for 

some k ∈] . We distinguish two cases,∑ j∈N j ja x ≥ 0 and ∑ j∈N j ja x ≤ 0. In the first 
case, 
 

0j j
j N

a x f
∈

≥∑  (6) 

 
must hold, where N + = {j ∈ N : ja  ≥ 0} and N – = N \ N +. In the second case, we have 

∑ j∈N j ja x− ≤ f0 –1 which is equivalent to 
 

0
0

0
.

1 j j
j N

f
a x f

f −∈

− ≥
− ∑  (7) 

 
Now we apply Observation 1 to the disjunction P1 = PI ∩ {x : ∑ j∈N j ja x ≥ 0} and P2 = 
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PI ∩ {x : ∑ j∈N j ja x ≤ 0} with PI = conv{x ∈ p
+] ×

n p−

+\ : Ax = b}. We obtain the valid 
inequality 
 

 0
0

01j j j j
j N j N

f
a x a x f

f+ −∈ ∈

− ≥
−∑ ∑  (8) 

 
This inequality may be strengthened in the following way. Observe that the derivation 
of (8) remains unaffected when adding integer multiples to integer variables. By doing 
this, we may put each integer variable either in the set N + or N −. If a variable is in N +, 
the final coefficient in (8) is ja  and thus the best possible coefficient after adding 

integer multiples is fj = f( ja ). In N – the final coefficient in (8) is 0

01
f

jf
a

−
−  aj and thus 

0

0

(1 )
1

jf f
f
−

−
 is the best choice. Overall, we obtain the best possible coefficient by using 

min(fj 0

0

(1 )
1

jf f
f
−

−
). This yields Gomory’s mixed integer cut 
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It can be shown that an algorithm based on iteratively adding these inequalities solves 
min{cT x : x ∈ PI} in a finite number of steps provided cTx ∈] for all x ∈ X. Note also 
that (9) is at least as strong as (4) in the pure integer case. 
 
Mixed-Integer-Rounding Cuts. 
 
Consider the following basic mixed integer set X = {(x, y) ∈]× +\ : x – y ≤ b} with b 
∈ \  and the inequality 
 

 1 .
1 ( )

x y b
f b

− ≤ ⎢ ⎥⎣ ⎦−
 (10) 

 
Inequality (10) is valid for PI = conv(X). The validity of this inequality is illustrated in 
Figure 1. A formal proof can be obtained by applying Observation 1 to the disjunction 
P1 = PI ∩ {(x, y) : x ≤ ⎣b⎦} and P2 = PI ∩ {(x, y) : x ≥ ⎣b⎦ + 1}. 
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Figure 1: Illustration of basic MIR inequality (10) 
 
The two-dimensional case can be generalized to higher dimensions. Consider the 
following mixed integer set  
 
 {( ,  ) :  -  }n TX x y a x y b+ += ∈ × ≤] \  (11) 
 
with a ∈ n\ , b ∈\ . We take fi = f(ai) and f0 = f(b) in the sequel. The inequality 
 

 0
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1 1
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∑  (12) 

 
is called a mixed integer rounding (MIR) inequality, where v+ = max(0, v) for v ∈\ . It 
is valid for PI = conv(X). To see this apply the two-dimensional inequality (10) to the 
relaxation w – z ≤ b of aTx – y ≤ b, where w = 

0{ : }ii N f f∈ ≤∑ ⎣ai⎦ xi+ 
0{ : }ii N f f∈ >∑  ⎡ai⎤ xi ∈ 

]  and z = y+ 
0{ : }ii N f f∈ >∑ }(1– fi)xi ≥ 0. 

 
MIR inequalities imply Gomory’s mixed integer cuts (9) when applied to the mixed 
integer set X = {(x, y–, y+) ∈ n

+] × 2
+\ : aTx + y+ – y– = b}. To see this consider the 

relaxation aTx – y− ≤ b of X. Applying (12) yields 
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Subtracting the original inequality aT x + y+ – y− = b gives Gomory’s mixed integer cut 
(9). MIR inequalities provide a complete description for any mixed 0/1 polyhedron. 
 
Lift-and-Project Cuts. 
 
The idea of ‘lift and project’ is to consider the integer programming problem, not in the 
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original space, but in some space of higher dimension (lifting). Then inequalities found 
in this higher dimensional space are projected back to the original space resulting in 
tighter integer programming formulations. Versions of this approach differ in how the 
lifting and the projection are performed. All approaches only apply to 0/1 mixed integer 
programming problems. The validity of the procedure is based on an easy observation. 
 
Observation 2 
 
If c0 + cT x ≥ 0 and d0 + dT x ≥ 0 are valid inequalities for X, then (c0 + cT x) (d0 + dTx) ≥ 
0 is valid for X. 
 
Consider a 0/1 integer program min{cT x : x ∈ X} with X = {x ∈ {0, 1}p × n p−\ : Ax ≤ 
b}, in which the system Ax ≤ b already contains the trivial inequalities 0 ≤ xi ≤ 1 for i = 
1, ..., p. Let P = {x ∈ n\  : Ax ≤ b} and PI = conv(X). Consider the following procedure. 
 
Algorithm 3 (Lift-and-Project) 
 
1. Select an index j ∈ {1, ..., p}. 
2. Multiply Ax ≤ b by xj and 1 – xj giving 
 

 
( )

( )(1 ) (1 )
j j

j j

Ax x bx

Ax x b x

≤

− ≤ −
 (14) 

 
and substitute yi := xixj for i = 1, ..., n, i ≠ j and xj := 2

jx (lifting). 
Call the resulting polyhedron Lj(P ). 
 
3. Project Lj(P ) back to the original space by eliminating variables yi. Call the 
resulting polyhedron Pj. 
 
It can be shown that the j–th component of each vertex of Pj is either zero or one. Now 
apply Algorithm 3 to Pj by selecting some other index. After repeating this procedure n 
times, PI is obtained. 
 
The problem that remains in order to implement Algorithm 3 is to carry out Step 3. Let 
Lj(P ) = {(x, y) : Dx + By ≤ d}. Then the projection of Lj(P ) onto the x-space can be 
described by  
 
 { : ( )  for all }T T

jP x u D x u d u C= ≤ ∈  (15) 
 
where C = {u : uT B = 0, u ≥ 0}. Thus, the problem of finding a valid inequality in Step 
3 of Algorithm 3 that cuts off a current (fractional) solution x* can be solved by the 
linear program 
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*max ( )

.

Tu Dx d
u C

−
∈

 (16) 

 
C is a polyhedral cone and thus the linear program (16) is unbounded, if there is a 
violated inequality. For algorithmic convenience, C is often truncated by some 
“normalizing set”. If an integer variable xj that attains a fractional value in a basic 
feasible solution is used to determine the index j in Algorithm 3, then an optimal 
solution to (16) indeed cuts off x*. 
 
Observation 2 can be applied to a more general setting by multiplying Ax ≤ b not only 
with xj and 1 – xj, but with products of higher order of the form 

( )( )
1 2

(1 )j jj J j Jx x
∈ ∈

−∏ ∏  such that J1, J2 ⊆ {1, ..., n} are disjoint and |J1 ∪ J2| = d 

for some fixed value d ≥ 1. 
 
We want to emphasize here that in contrast to the pure integer case none of the cutting 
plane procedures presented yields a finite algorithm for general mixed integer programs. 
It is still an open question whether such a procedure exists. 
 
- 
- 
- 
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