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Summary 
 
Nonsmooth optimization deals with functions whose first derivatives are not continuous. 
Many such optimization problems come from Operations Research; they are often 
large-scale, involving many variables and/or constraints. These problems necessitate 
special algorithms. After a short introduction, we state the framework and mention the 
main class of applications: Lagrangian relaxation, or duality. Then, we explain the 
leading principles to design suitable algorithms, more precisely bundle methods. Finally, 
we give some illustrative examples. 
 
1. Introduction 
 
Optimization problems are often encountered, in which the objective f has discontinuous 
derivatives; they call for nonsmooth optimization. (For a discussion of methods for 
solving optimization problems with differentiable functions see Nonlinear 
Programming.) In fact, classical gradient methods fail in a nonsmooth context. First of all, 
there is usually no derivative at an optimum point, so that the standard optimality 
condition ∇f(x) = 0 becomes meaningless. Besides, the information contained in 
gradients becomes less and less relevant when approaching a point of nondifferentiability. 
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A way out of this dilemma is to work at each iterate with some or all previously computed 
gradients. This simple idea of bundling the information is the basic ingredient of all 
so-called bundle methods, which form an important class of nonsmooth optimization 
methods. 
 
The reader is warned against a common belief, that in nonsmooth (nondifferentiable) 
optimization, derivatives are not used − and not computed. Actually, and this might seem 
paradoxical, nonsmooth optimization makes a heavy use of gradients (or rather 
subgradients) which, another paradox, are usually very easy to compute. 
 
We restrict ourselves to convex f, a situation in which things are more easily explained. 
For similar reasons, we consider only unconstrained problems. It should be mentioned, 
however, that a complete theory has been developed for bundle methods, which does not 
require convexity from f (although the simultaneous presence of nonsmoothness and 
nonconvexity results in substantially less efficient algorithms). 
 
In section 2, we state the general problem and one of its main motivations: Lagrangian 
relaxation, or duality, a very useful methodology in various branches of applied 
mathematics. The algorithmic part makes up section 3, where we give a condensed 
introduction to bundle methods.  Section 4, illustrates the use of nonsmooth optimization 
codes. 
 
2. The General Problem and Its Motivation 
 
We start this section by the general statement of a convex nonsmooth optimization 
problem. Then we present Lagrangian relaxation, which is by far the main source for such 
problems. 
 
2.3 The Nonsmooth Problem 
 
Throughout the following, f is a convex functional on the n-dimensional Euclidean space 

n and we study the problem  
 
 minimize f(x) on n  (1) 
 
There are no constraints; but, in contrast with the standard situation, we do not require f to 
be smooth. The subdifferential 
 
 ( ) { | , ( ) ( )nf x s s z x f z f x∂ = ∈ − ≤ −  for all }nz ∈  (2) 
 
of the convex f at x will serve as substitute for the gradient. This  ∂f(x) is a non-empty, 
convex and compact set, which shrinks to the gradient ∇f(x) whenever f is differentiable 
at x. We make the general assumption:  
 
 at every x, we know f(x) and one (arbitrary) ( )s f x∈ ∂ . (3) 
 
This assumption is fairly natural and the next subsection will show that such an s ∈ ∂f(x) 
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(a so-called subgradient) can often be computed. In other words: we have a black box 
(sometimes called an oracle) which, given x, answers f(x) and some s ∈ ∂f(x). Thus, the 
situation is similar to that in ordinary smooth optimization, except that s will not vary 
continuously with x. 
 
The optimality condition for the convex f to be minimal at x is well-known: ∂f(x) must 
contain the 0-vector (the definition itself of ∂f(x) shows that this condition is obviously 
necessary and sufficient). Yet, the poor knowledge about f, as specified by (3), makes it 
impossible to check the optimality condition directly: a mechanism is needed to somehow 
build the whole of ∂f, out of the single vectors given by the black box. This is what bundle 
methods are about. 
 
2.4 Lagrangian Relaxation 
 
Consider an abstract optimization problem 
 
 max ( ),g u  subject to ( ) 0, 1, ..., .jc u j n= =  (4) 
 
Suppose that this problem would be “simple” if the constraints were not present. This is 
for example the case in large-scale optimization where each function is a sum of a big 
number of simpler functions; say 
 

 
1

( ) ( )
N

i i
i

g u g u
=

= ∑  and 
1

( ) ( ), 1, ..., .
N

j ji i
i

c u c u j n
=

= =∑  (5) 

 
We see in this decomposable situation that the constraints link together the simpler 
variables ui. An attractive idea is then to eliminate these constraints. 
 
One way of doing this, without destroying completely the necessity for such constraints, 
is to introduce the Lagrangian function, which depends on u and on n real parameters xi 
(one for each constraint). For the general problem (4), this Lagrangian is 
 

 
1

( , ) : ( ) ( ) ( ) , ( ) .
n

j j
j

L u x g u x c u g u x c u
=

= + = +∑  (6) 

 
The idea is then to maximize L(·, x) on the whole space, for fixed x. When the problem is 
decomposable as above, we have 
 

 
1 1 1 1

( , ) ( ) ( ) ( , ),
N n N N

i i j ji i i i
i j i i

L u x g u x c u L u x
= = = =

= + =∑ ∑ ∑ ∑  (7) 

 
where we have set Li (ui, x) := ci(ui )+〈 x, ci (ui)〉 . Here, maximizing the Lagrangian with 
respect to u reduces to the maximization of N independent functions Li , each of which 
depends on ui only. We see the decomposition effect of the Lagrangian. This technique is 
called Lagrangian relaxation. 
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Now comes the theory. Of course, the maximal value of the Lagrangian depends on x. Let 
us denote by f the resulting so-called dual function: f(x) := maxuL(u, x). Then the 
following properties hold:  
 
i. f(x)  g(u) for all x ∈ n and all u feasible in (4), this is called the weak duality 

relation;  
ii. each f(x) thus provides an upper bound of the optimal value in (4) and computing the 

best upper bound − i.e. minimizing f over n − is of importance;  
iii. f turns out to be a convex function of x, and  
iv. if ux maximizes the Lagrangian at x (ux solves maxu  L(u, x)), then the vector c(ux) ∈ 

n  (the partial derivatives of L) is a subgradient of f at x. 
 
We see that Lagrangian relaxation places us exactly in the framework described in the 
previous subsection. 
 
3. Algorithms for Convex Optimization 
 
There are two seminal algorithms for convex optimization: subgradients and cutting 
planes. The latter is already a form of bundle method. It has serious shortcomings, which 
can be cured, and this is the subject of the present section. 
 
- 
- 
- 
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