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Summary 
 
This article deals with decision making processes governed by multiple criteria. In order 
to concentrate on this aspect of decision making, the focus lies on deterministic 
approaches, at the expense of consideration of the problems of risk and uncertainty. In 
recent decades, an impressive number of approaches have been proposed in this field. 
This survey starts with a categorization of these approaches into two general classes; 
their main concepts are outlined and typical methods described. To assist readability, 
the use of mathematics is limited and the subject is developed using small typical 
examples of multiple-criteria decisions. 
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1. Introduction 
 
Multiple-criteria decision making (MCDM) deals with decision situations where the 
decision maker has several—usually conflicting—objectives. In typical real-life 
problems, no “ideal” alternative exists in the sense of one that is optimal for each 
objective. Thus, the most important task in multiple criteria decision making is to find a 
“good” compromise. This is the alternative that performs best in the eyes of the decision 
maker, taking into account all objectives simultaneously. Hence, the quality of a 
compromise depends on the decision maker’s preferences, which are multidimensional 
in nature and, at best, partially known. The central question in all approaches in this 
field is: how can additional information about the decision maker’s multidimensional 
preference structure be used in order to support him or her in making a decision? The 
focus of MCDM lies in fact on decision support, rather than on a theoretical 
exemplification of rational choice. The following small example will be used to 
illustrate the basic concepts of multiple-criteria decision making. 
 
Example: consider the problem of finding a new house for a family. The decision 
maker(s) might have decided upon some objectives: a lot of living space, an acceptable 
price, a nice residential area, and so on. Suppose they have examined the daily 
newspaper and compiled a list of potential houses that appear promising because they 
seem to meet these demands. How do they make the decision? 
 
1.1. General Concepts 
 
Throughout this article the focus lies on decisions. The MCDM model consists of 
various elements, depending on the nature of the decision problem. Figure 1 depicts the 
elements which are often found, and which will be described in most detail in the 
following subsections. 

 

 
 

Figure 1. Elements of MCDM models 
 

1.1.1. Decision Space, Decision Variables, and Alternatives 
 
A decision is characterized by the decision maker’s choice between different possible 
courses of action, called alternatives. In the house-purchase example the relevant 
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courses of action are, quite simply, buying different houses. Therefore, each house 
identified in the newspaper forms an alternative. This yields a decision problem with a 
finite set of feasible alternatives, called the feasible set X. In this case, the decision 
maker is explicitly aware of each alternative. In fact, this represents a special type of 
decision problem, as decision problems often have an infinite number of alternatives. In 
this case an alternative can be defined by a vector of (real) numbers x:=(x1, x2,…, xn). 
The components of this vector are called decision variables. Each decision variable is 
related to a particular aspect of the alternatives. For example, when planning financial 
investments there may be different investment opportunities. In this case the 
components of x may denote the amount of money invested in each opportunity. 
 
Usually not all the points in the space defined by the components of x—called the 
decision space—represent a feasible alternative. Normally certain constraints exist 
restricting the feasible set X to a subset of the decision space. In financial planning, the 
constraints may result from restricted budgets, or from certain conditions concerning 
structural relations between different investments. The use of constraints in decision 
space yields an implicit definition of the feasible set, because the individual alternatives 
are not explicitly known. From a decision-theoretic point of view, there is no major 
difference between an explicit or implicit definition of the feasible set. However, in the 
latter case there is the additional problem of identifying feasible alternatives. On the 
other hand, an implicit formulation may provide a structure that can be exploited by 
special solution techniques. 
 
1.1.2. Criteria and Outcomes 
 
The decision maker has to define a set of criteria that reflects the various consequences 
arising from the choice of an alternative. In MCDM more than one consequence is 
considered, which means that every alternative has an image in an m-dimensional 
outcome space. For each of the relevant consequences a function ci (i=1,…,m) has to be 
defined. Based on the functions ci, a vector-valued function c(x):=(c1(x), c2(x),…, cm(x)) 
can be defined. The vector y=c(x) is termed outcome of x. The image of the feasible set 
X under the function c is termed the set of feasible outcomes, and is denoted by Y. 
Typically ℜm is used as the outcome space, which means that each criterion is a real-
valued function ci: X→ℜ, leading to the following definition 
 

: mc X Y→ ⊂ℜ  
 

( ) ( ) ( ) ( )( )1 2, , , my c x c x c x c x= = …  (1) 
 
It should be mentioned that the assumption of real-valued criteria is not a restrictive one. 
In fact, this is only a question of encoding. For instance, for the criterion “color” the 
domain of possible values such as “black,” “white,” “red,” and so on may be encoded 
by real numbers. 
 
In a real decision situation, defining a set of criteria may be a crucial task. The 
following requirements should be fulfilled for the set of criteria considered: 
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• Completeness: all aspects that must be evaluated by the decision maker should be 
covered by the system of criteria. A necessary condition for completeness is that the 
decision maker has to be impartial with regard to any pair of alternatives with 
identical outcomes. 

 
• Mutual exclusiveness: each criterion should only measure aspects of the problem 

that are not measured by any other criterion. This is to avoid double counting of 
aspects. 

 
• Reliability: each criterion should assess precisely the aspect it is intended to 

measure. 
 
• Appropriate precision: each criterion should assess the aspect it is intended to 

measure as precisely as necessary. 
 
• Independence: different types of independence are considered in literature. The 

fundamental type is known as weak preference independence. A criterion is called 
weakly preference-independent of the other criteria if its evaluation is independent 
of the values of all other criteria. For example, the criterion “color” for evaluating a 
car is not weakly preference-independent if a white Rolls Royce is preferred to a red 
one, but a red Ferrari is preferred to a white one. 

 
• Non-redundancy: for reasons of economy, the system of criteria should be as small 

as possible. A criterion is redundant if its deletion does not affect the comparative 
evaluation of any pair of alternatives by the decision maker. 

 
In complex situations with many criteria, a hierarchy is often formulated. In such a 
hierarchy, the general criteria on the higher levels are gradually broken down into more 
specific ones on the lower levels. 
 
Another important issue is the question of how a criterion measures the decision 
maker’s preferences. Figure 2 shows three different types of measurement scales. 

 

 
 

Figure 2. Hierarchy of scales 
 

On an ordinal scale, there is an ordering of the criterion values. When using real-valued 
criteria, the natural ordering of real numbers can be used to formulate both maximizing 
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and minimizing problems. It should be pointed out that the numbers on an ordinal scale 
provide no information about strength of preference: they only define a rank order for 
the set of alternatives. 
 
On a cardinal scale, a criterion provides more information about the decision maker’s 
preferences than it does on an ordinal scale. The criteria values do not only imply a rank 
order; they also reflect the strength of preference between any pair of them. Two types 
of cardinal scales, interval and ratio scale, can be distinguished. On an interval scale, 
the strength of preference is measured by the difference between the values of the 
criteria, whereas on a ratio scale it is measured by the quotient of these values. If a 
criterion is measured on a ratio scale, the following statement is possible: “concerning 
this criterion, A is twice as good as B.” On an interval scale a typical preference 
statement is: “concerning this criterion, the preference of A over B is greater then the 
preference of C over D.” It should be noted that, because of the increase of preference 
information obtained by changing from ordinal to cardinal scales, the assessment of the 
criteria in the latter mode is more demanding. 
 
In a decision problem with a finite feasible set, one can arrange all information 
concerning alternatives and criteria in a so-called decision matrix. For the house-
purchase example, the decision matrix is given in Table 1. 

 
Criterion 
Alternative 

c1: 
Number of 

Rooms 

c2: Condition c3: Age 
[year] 

c4: Price 
[$] 

c5: Distance 
to Center 

[miles] 
x1: Ash Street 10 good (4) 4 260,000 5 
x2: Beacon Avenue 11 very good (5) 5 240,000 4 
x3: Cambridge Street 7 poor (2) 15 200,000 7 
x4: Davis Square 7 very poor (1) 15 200,000 8 
x5: Exeter Road 7 very poor (1) 20 220,000 8 
x6: Forest Street 9 fair (3) 10 240,000 6 
x7: Glen Road 13 very good (5) 0 320,000 3 

 
Table 1. Decision matrix for the house-purchase example 

 
In this example there are seven alternatives, x1 to x7, evaluated by five criteria, c1 to c5. 
Obviously, the second criterion “condition” is qualitative in nature. In brackets, a 
numerical encoding is given which translates it into a maximizing criterion on an 
ordinal scale. All the other criteria are already numerical, and can be measured on a 
cardinal scale. Furthermore, it is assumed that the first two criteria should be maximized 
while the others should be minimized. Note that the rows of this decision matrix 
represent the outcomes of the alternatives. The set of feasible outcomes consists of 
seven vectors, and is a subset of the five-dimensional outcome space defined by the 
dimensions c1 to c5. 
 
1.1.3. Preferences 
 
In MCDM it is assumed that the decision maker takes a decision by looking not at the 
alternatives directly but at their outcomes. Therefore the decision maker’s preferences 
are defined in outcome space. For the house-purchase example, this means that the 
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decision maker’s preferences do not depend on the houses as such but on their price, 
size, situation in residential areas, and other factors. It is assumed that a binary relation 
y ≿ y’ exists, defined on the set of feasible outcomes often referred to as weak 
preference, with the meaning y is at least as good as y’. This relation may be separated 
into its symmetric and asymmetric parts, termed  indifference (∼) and strict preference 
(;). 
 
Generally, the following assumptions are made: Strict preference is asymmetric (y;y’ 

⇒ y’⊁y) and transitive (y;y’∧ y’;y’’⇒ y;y’’). Indifference is reflexive (y∼y), 
symmetric (y∼y’ ⇒ y’∼y), and transitive (y∼y’∧ y’∼y’’⇒ y∼y’’). Note that symmetry 
of indifference is directly related to the completeness of the system of criteria. 
Furthermore, it is assumed that there is only partial knowledge about this preference 
relation, at least at the beginning of the decision process. 
 
One main characteristic of the different approaches to MCDM is concerned with 
additional assumptions about the properties of the decision maker’s preference relations. 
The most important one is the assumption of completeness of the preference relation, 
implying a complete pre-ordering of the set of feasible outcomes. The existence of a 
complete pre-order is a rather strong assumption, since it implies that the decision 
maker is able to give a valid preference statement on any pair of feasible outcomes. 
 
1.1.4. Decisions 
 
A decision problem can appear in various different ways, but three types are most often 
found: 
 
• Choice problems 
• Sorting problems 
• Ranking problems 
 
A choice problem is the type of decision problem one thinks of most often when 
considering decision making. It is the problem of selecting a “small” subset X* of “best 
solutions” from the feasible set X: in other words, identifying X*⊂X. In most cases, 
only one alternative must be chosen. The house-purchase example represents such a 
typical choice problem if only one house is to be bought. 
 
A sorting problem is the task of partitioning the feasible set into some subsets Xi

*: in 
other words the task is to identify X1

*, X2
*,…, Xk

*⊆X, so that the Xi
*  do not have any 

element in common and ∪Xi
*=X. Problems of this type appear, for instance, at a bank 

making decisions on whether to give loans to clients. Here, the set of applicants is often 
separated into three subsets. The first is defined as the set of applicants who will 
definitely not receive a loan. The second subset contains those applicants who will 
receive their loan. The final subset will be formed of those applicants who need further 
consideration. Sorting problems often arise in some phase of a more complex decision 
process. For instance, in the house-purchase example one may first subdivide the houses 
found in the newspaper into three classes. The data available on the houses in the first 
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class is sufficient to consider them for the final choice. The houses in the second class 
might also be interesting, but more information is needed to confirm this. The houses in 
the third class are not attractive and will not be considered further. 
 
Finally, in a ranking problem achieving a rank order of the alternatives is the desired 
result. Problems of this type appear, for instance, when filling an academic position and 
a list of candidates must be proposed. Again, this problem may also be a phase of a 
more complex decision process. In the house-purchase example, a rank order of the 
available houses could be defined first before starting negotiations with the owners, one 
after another, according to this order. 
 
From a mathematical point of view, sorting and ranking problems can be reformulated 
as choice problems. For instance, a sorting problem can be transformed into a choice 
problem by defining the feasible set as the set of all partitions of the original set of 
alternatives. Accordingly, for a ranking problem the feasible set can be defined as the 
set of all rankings of the alternatives. Since the choice problem with exactly one 
alternative representing the final decision is the most common type of decision problem, 
the material that follows focuses on this type. 
 
1.2. Dominance and Efficiency 
 
In MCDM, the concept of optimality is adapted to the multi-dimensionality of the 
outcome space by the concept of dominance. Assuming, without loss of generality, that 
all the criteria are minimizing criteria, dominance can be defined as follows: 
 
Definition: let y=c(x)∈Y and y’=c(x’)∈Y be feasible outcomes and y≠y’. y dominates 
y’ if, and only if, yi≤yi’ for all i∈{1,2,…,m}. Accordingly, in this case we say of the 
alternatives that x dominates x’. 
 
In choice problems with exactly one alternative representing the final decision, the 
concept of dominance may be used to discard some alternatives (the dominated ones) 
from consideration. If the set of criteria is complete and there is an alternative x 
dominating some other alternative x’ it would not be reasonable to choose the 
dominated alternative x’, since x is at least as good as x’ with respect to every criterion. 
On the contrary, if the decision maker prefers alternative x’ to its dominating alternative 
x, then the system of criteria must either be incomplete or ill-defined. 
 
Strongly related to the dominance is the concept of efficiency, as defined below. 
 
Definition: an alternative x∈X is called efficient if, and only if, no other feasible 
alternative x’∈X dominating x exists: in other words, if ci(x’)≤ci(x) holds for all 
i∈{1,2,…,m} then c(x’)=c(x). The set of efficient alternatives is called the efficient set, 
denoted by Eff(X)⊆X. Analogously the set of non-dominated outcomes in the outcome 
space, called the set of efficient outcomes, is denoted by Eff(Y)⊆Y. In fact, it is the 
image of the efficient set under the function c. 
 
Due to the importance of the concept of efficiency, other types of efficiency have also 
been discussed in the literature. It should be pointed out that the concepts of dominance 
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and efficiency require all criteria to be measured using ordinal scales at least. 
 
Example: looking at the house-purchase example and taking into account that the first 
two criteria are to be maximized, while the others are of the minimizing type, it can be 
seen that “Beacon Street” dominates “Forest Street,” “Cambridge Street” dominates 
“Davis Square,” and “Davis Square” dominates “Exeter Road”. Moreover, through the 
transitivity of the dominance relation it follows that “Cambridge Street” also dominates 
“Exeter Road.” Since these are the only dominance relations, it follows that the efficient 
set consists of “Ash Street,” “Beacon Avenue,” “Cambridge Street,” and “Glen Road.” 
 
1.3. Basic Approaches 
 
Apart from in the extraordinary situation when an alternative x* dominates all others 
exists (i.e. Eff(X)={x*}), the concept of efficiency cannot be used to solve a choice 
problem. The efficient set may contain a number of quite different alternatives, with 
outcomes widespread over the outcome space. However, under the assumption that the 
preferences of the decision maker are captured by preference relations that form a 
complete preorder in outcome space, a unique best alternative (or set of equal-best 
alternatives) exists. The main task in MCDM is bridging the gap between the efficient 
set and a best alternative according to the decision maker’s preferences. There are two 
fundamentally different approaches to this. The first standard one, termed the value 
function approach, tries to close this gap by representing the decision maker’s 
preferences using a real-valued function on the outcome set, called a value function. 
This approach is inspired by the fact that the existence of a complete preorder on the 
outcome set, together with some continuity assumptions of little practical importance, 
implies the existence of a value function representing the decision maker’s preferences. 
Moreover, this is a very elegant approach from a methodological point of view since it 
transforms the multiple criteria problem into a standard, single-criterion optimization 
problem. Given a value function, solving the problem can be an algorithmic problem, 
but is no longer a decision-theoretical one. The key problem associated with this 
approach is the determination of the value function, which will be discussed in the next 
section. It should be mentioned that the term “value function” is used here according to 
the more recent decision theory literature, while the term “utility function” is applied to 
the analogue approach under risk. The other approach to finding a best alternative in a 
multiple-criteria decision problem is the vector optimization approach. Here one tries to 
avoid constructing a detailed model of the decision maker’s preferences. In an 
interactive process, the decision maker is provided with information about the outcome 
set and is asked for some preference information. Organizing this process of exchanging 
information iteratively, a search process in the efficient set is realized. 
 
- 
- 
- 
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