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Biographical Sketch 

 

Summary  

 

This chapter follows the developments in algebra and analysis that eventually led to the 

creation of a new branch of geometry with focus on the qualitative aspects of geometry, 

originally termed analysis situs, or geometria situs, by Leibniz, but since 1836 better 

known under the name topology, suggested by the German mathematician Listing. 

 

1. Introduction 

 

In a memoir of 1679, the German philosopher Gottfried Wilhelm Leibniz (1646–1716) 

set himself the goal of formulating some fundamental properties of geometrical figures, 

using special symbols to represent them, and combining these properties to make others. 

He called his studies analysis situs, or, geometria situs. It is slightly unclear what he 

meant, but in a letter to Huygens 1679 he explained that he was unsatisfied with the way 

coordinate geometry handles geometrical figures because it involves quantities. Leibniz 

searched for another form of analysis “which is truly geometrical by expressing position 

(situs) directly, in the same way as algebra expresses magnitude”.  

 

Leibniz did not immediately stimulate any new developments with his vague ideas, but 

in 1735, the Swiss mathematician Leonhard Euler (1707–1783) published an article 

with the title Solution of a problem from geometria situs. The article provides a solution 

to the problem known as the Königsberger bridge problem, and the title of the article 

clearly indicates that Euler considered it to be a contribution in the spirit of the ideas put 

forward by Leibniz. Today one would probably say that Euler misunderstood Leibniz‟s 

intentions by referring to his investigations as a contribution to geometria situs. The 

solution to the Königsberger bridge problem is nowadays counted as the first proper 

contribution to graph theory, although Euler makes no mention of the notion of a graph 

in either this or in any other of his papers. 

 

Euler did, however, make a pioneering contribution in the field of analysis situs. His 

proof of the combinatorial property of the surface of a convex polyhedron, known as the 

Euler’s polyhedron formula, in an article of 1750, clearly belongs to the study proposed 

by Leibniz. If you count the number V  of vertices, the number E  of edges, and the 

number F of faces on the surface of a convex polyhedron, then the alternating sum 

– 2V E F  . Euler‟s proof of this formula is now counted as the first proper 

contribution to analysis situs. The formula was certainly known by 1639 to the French 

philosopher and mathematician René Descartes (1596–1650) and through his 

unpublished manuscript also to Leibniz in 1675. (Presumably, the formula was known 

already to Archimedes (287–212 BC).). 

 

In a letter dated April 1
st
, 1836, the German mathematician Johann Benedict Listing 

(1806–1882) suggested the name topologie for the study of geometrical figures 

following Leibniz. In print, the new name topology was used for the first time in the 

book Vorstudien zur Topologie, published by Listing in Göttinger Studien 1847. The 

word derived from „topos‟, the Greek expression for place or location, and „logos‟, 

meaning words for, or the study of, something. The name analysis situs was still 
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commonly used for qualitative studies of geometrical objects in the first half of the 20
th

 

century, but from about 1950, the name topology has been used exclusively.  

 

In the late 19
th

 and early 20
th

 centuries topology gradually replaced geometry as the 

fundamental domain for large parts of mathematics. So we begin by looking at the 

dramatic state of research in geometry in the late 19
th

 century, and we follow the 

developments that led first to the creation of a topology of manifolds, then to a renewed 

interest in axiomatic geometry. Then we look at the roots of topology. To this day 

topology has two identifiable overlapping parts: one often called algebraic topology and 

the other point-set topology. Algebraic topology has its roots in a geometric approach to 

complex analysis; point-set topology grew out of a variety of problems in real and 

complex analysis. 

 

2. Three Visions of Geometry in the late Nineteenth Century  

 

Geometry went through two major changes in the 19
th

 century, or rather it experienced 

two major challenges, one largely successful and the other at first rebuffed. In 1800 the 

subject was largely confined to Euclidean geometry in two and three dimensions, often 

taught according to the pattern laid down in texts of Euclid’s Elements (as it was in the 

influential text book Éléments de Géométrie by Legendre) or in the more algebraic style 

introduced in the 17
th

 century by Descartes (Cartesian or coordinate geometry).  

 

Gaspard Monge (1746–1818) in Paris was also interested in the projections of solid 

figures onto planes, for the use of engineers and architects, and in the 1810s and 1820s a 

number of French geometers, mostly his former students at the newly-founded École 

Polytechnique, promoted a study of the properties that geometric figures share with 

their shadows. The most important of these was Jean Victor Poncelet (1788–1867) 

whose Traité des Propriétés projectives des figures of 1822 showed how this new 

geometry, called projective geometry, could unify, simplify, and extend the study of 

conic sections. 
 

2.1. Projective Geometry as a Fundamental Geometry 

 

Contemporaries found some of Poncelet‟s methods unconvincing; however, another 

French geometer, Michel Chasles (1793–1880), showed how to replace them with a 

systematic use of the invariance of cross-ratio under projection. The cross-ratio of four 

points ,  ,  ,  A B C D  on a line can be defined in various ways, all of them equivalent to 

AB CD

AD CB




, and if these four points are projected (see the figure below) to the four points 

, , ,A B C D     on another line then the cross-ratios are equal: 
' ' ' '

' ' ' '

AB CD A B C D

AD CB A D C B

 


 
. 

 

In some sense this property of four collinear points in projective geometry plays the role 

of distance, the separation between two points on a line, in Euclidean geometry. The 

same approach was also adopted independently by the Swiss mathematician Jakob 

Steiner (1796–1863), who taught projective geometry in Berlin, and projective 

geometry steadily became accepted as a fundamental new approach to geometry. 
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Figure 1. Cross-ratio under projection 
' ' ' '

' ' ' '

AB CD A B C D

AD CB A D C B

 


 
 

 

The properties a figure shares with its shadows are not many. It is easy to see that 

lengths are not shared –  a shadow of a line segment can be many different lengths –  

and Poncelet called his new geometry non-metrical for that reason. This is quite a 

paradoxical name, since geometry, after all, means the measure of the earth, and 

geometry would seem to be about measured lengths. Neither do the angles in a figure 

agree with those in its shadows. But if a line meets a curve in three points their shadows 

meet in three points, and if a line touches a curve their shadows touch. The properties of 

intersection and tangency are shared; one says they are invariant under projection. And, 

as we have seen, there is a possibly unexpected property of four points on a line: they 

have a cross-ratio that is preserved under projection. A projective property is by 

definition one that is the same for a figure and any of its images under a projective 

transformation. Projective geometry is the study of the projective properties of figures 

and because projective properties are automatically true in Euclidean geometry it was 

gradually agreed by the middle of the 19
th

 century that projective geometry is more 

fundamental than Euclidean geometry. 

 

2.2. Non-Euclidean Geometry and Physical Space 

 

At the same time, the late 1820s and early 1830s, Euclidean geometry was facing 

another, and arguably more fundamental challenge, but one that was held at bay for a 

further generation. This began as a concern about the nature of straight lines, in 

particular parallel lines (by definition, parallel lines are lines that never meet). The 

account of them in Euclid’s Elements leads naturally to the idea that two parallel lines in 

a plane are everywhere the same distance apart. János Bolyai (1802–1860) in what is 

now Hungary, Nicolai Ivanovich Lobachevskii (1793–1856) in Kasan in Russia, and 

Carl Friedrich Gauss (1777–1855) in Göttingen, Germany, all investigated a geometry 

in which some pairs of straight lines might draw closer and then diverge and so never 

meet, and other pairs would draw closer and closer but still never meet, much as do the 

hyperbola and its asymptotes. However, Gauss, who was the dominant mathematician 

of his time, never published his ideas. Bolyai did, but only obscurely, and Lobachevskii, 

who did publish, found that his ideas were ignored. Had Gauss taken them up and lent 

his name to them, matters might have been different, but he gave them only half-hearted 
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support, and it was left to mathematicians of the next generation (after Gauss, Bolyai 

and Lobachevskii were dead) to appreciate what they had done. 

 

In particular, Bolyai and Lobachevskii had shown that a new geometry was possible, 

one that differed from Euclidean geometry in just one respect (the nature of parallel 

lines) but which had a perfectly good concept of length and angle and could in fact be 

the correct geometry of physical space. Indeed, they discovered a family of such 

geometries that depended on a parameter and had Euclidean geometry as a limiting case 

(when that parameter took the value 0).  

 

Attempts to determine this parameter all failed, because it was soon clear that it must be 

very close to zero and too close to measure at the time, but the much more important 

point was that the new geometry was possible at all. It followed that Euclidean 

geometry could not be a priori true, as had hitherto been thought. It was surely this 

challenge to a deeply held belief that caused non-Euclidean geometry (as the new 

geometry came to be called) to be so strongly resisted. 

 

2.3. The Kleinian View of Geometry 

 

Matters changed when the German mathematician Friedrich Bernhard Riemann (1826–

1866), who had briefly studied with Gauss in Göttingen, proposed that geometry is 

simply the study of a space of points with a concept of distance. In his habilitation 

lecture in Göttingen of 1854 with the title "Über die Hypothesen, welche der Geometrie 

zugrunde liegen", published only posthumously in 1867, Riemann showed how this 

program, which was a vast generalization of ideas due to Gauss in the 1820s, could be 

made to work. He indicated in passing how to vindicate non-Euclidean geometry, and 

he was followed by the Italian mathematician Eugenio Beltrami (1835–1900).  

 

Both men argued that just as a description of the Earth in an atlas makes it possible to 

navigate on the (spherical) Earth and so do geometry on a sphere, so too there is a 

description in an “atlas”, which they described explicitly in formulae, of non-Euclidean 

geometry. This new description eliminated doubts about non-Euclidean geometry in the 

minds of mathematicians (philosophers followed only slowly).  

 

On the basis of Beltrami‟s “atlas”, in which curves of shortest length in two-

dimensional non-Euclidean geometry appear as straight chords inside a fixed circle, 

Felix Klein showed in the early 1870s how non-Euclidean geometry can be regarded as 

a special case of projective geometry. This gave him a way in which to proclaim that all 

the known geometries (Euclidean and non-Euclidean) are special cases of projective 

geometry; he did not know then about what is called affine geometry, but it fits in very 

naturally. Klein‟s unification of geometry became well-known when it was republished 

in the 1890s in several languages, by which time other mathematicians had made great 

strides in the study of geometry, and it is still called the Kleinian view of geometry.  

 

It emphasizes that any geometry is the study of a space and a group of transformations 

that move figures around in that space without altering the fundamental properties of 

that geometry. If those properties are the projective ones the transformations are the 
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projective transformations; if they preserve distance they are the metrical 

transformations of Euclidean or non-Euclidean geometry. 

 

2.4. Geometry in Spaces of any Number of Dimensions 

 

Although the Kleinian view of geometry did well, the Riemannian viewpoint is much 

more diverse and, arguably, more profound. It allows for geometries in spaces of any 

number of dimensions, and of a variety of shapes. One can, for example, study 

geometry on a torus, or on what is called a Riemann surface (the surface in four-

dimensional space defined by an algebraic equation in two complex variables). In this 

connection in 1880 the young French mathematician Henri Poincaré (1854–1912) made 

the remarkable discovery that all but the simplest Riemann surfaces naturally acquire 

non-Euclidean geometry, thus showing that non-Euclidean geometry has a major role to 

play in the study of complex function theory. The study of spaces with geometry locally 

like Euclidean geometry but globally different (such as the torus) proceeded rapidly in 

the second half of the 19
th

 century as a study of a variety of mathematical objects that 

can be given coordinates. This study remained, however either a branch of pure 

mathematics or a tool in mechanics, and it was not seriously thought at this time that 

physical space could be other than Euclidean or non-Euclidean. 

 

2.5. The Search for an Axiomatic Foundation of Geometry 

 

One reasonable reaction to all these new geometries was to wonder what had gone 

wrong: how could all those textbooks modeled on Euclid’s Elements have misled 

mathematicians and made them blind to the new possibilities? A critical re-examination 

of the arguments of such books, ancient and modern, led mathematicians to the view 

that such books were inherently flawed. Moritz Pasch (1843–1930), a German 

geometer, was among those who thought it would be better to start again and give 

projective geometry and Euclidean geometry new axiomatic foundations. He was 

followed by a number of mathematicians in Italy who gravitated around Giuseppe 

Peano (1858– 1932), of whom Mario Pieri (1860–1913) was the most active.  

 

They gave rigorous abstract axiomatic foundations for these geometries that, unlike 

Pasch, made no appeal to our beliefs about space and the objects in space. Their work 

proved less influential, however, than that of David Hilbert (1862–1943), the German 

mathematician who, with Poincaré, dominated mathematics at the start of the 20
th

 

Century. Hilbert also gave foundations of these geometries, but in so doing he 

successfully promoted the idea that the study of axiom systems was likely to be 

applicable across the whole of mathematics. This broad ambition, coupled with his 

powerful academic position and his brilliance in many other domains of mathematics, 

led to Hilbert‟s axiomatic geometries being the ones that are best remembered today. 

 

3. Main Roots to Topology 

 

By the end of the 19
th

 century geometry was firmly associated with the idea of 

transformations of figures and the properties of figures that are unaltered by such 

transformations. Simultaneously but in other branches of mathematics transformations 

were being studied, and properties invoked, that were to prove much more fundamental. 
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These are associated with the name of topology. Topology has two main roots: one is 

algebraic and grew out of complex function theory; the other has to do with sets of 

points and grew up in both real and complex analysis. 

 

3.1. The Classification of Surfaces 

 

A key early success in the algebraic tradition was the classification of surfaces. The 

concept of a surface is an intuitive one, and the work of numerous mathematicians at the 

start of the 19
th

 century led to the conclusion that surfaces can be distinguished by three 

characteristics. The first is obtained by drawing a net of curves on a surface that meet 

only at points (called vertices). This net must also divide the surface into disc-shaped 

regions (called faces) separated by the curves (called edges).  

 

It turns out that however this is done, if you count the number V  of vertices, the 

number E  of edges, and the number F  of faces on a given surface, then the alternating 

sum –V E F  always gives the same value  . The quantity –V E F    is called 

the Euler characteristic of the surface. It is 2 for the sphere, 1 for the disc, 0 for the 

torus, and so on. A surface may also have a number of “holes” or, somewhat more 

precisely, end in a number of distinct boundaries. This number is also used to classify 

surfaces. The third property is a little more elusive. It was to turn out that there are 

surfaces that do not permit one to define the notion of „clockwise‟ turning in a coherent 

way along the surface.  

 

The simplest of these is the Möbius band, which is obtained from a thin strip of paper 

that has been given a half-twist before one pair of opposite edges are glued together. 

Such a surface is said to be non-orientable; surfaces that permit one to define clockwise 

turning in a coherent way are called orientable.  

 

It was to turn out that surfaces which have the same Euler characteristic, the same 

number of boundary components, and are either both orientable or both non-orientable 

are topologically equivalent. Two surfaces are topologically equivalent if each can be 

mapped onto the other in a one-to-one correspondence of points such that nearby points 

stay nearby (in more mathematical terminology, the maps between the surfaces are to be 

continuous). 

 

The two mathematicians most responsible for this classification of surfaces worked 

independently. The German mathematician A.F. Möbius (1790–1868) published his 

account in 1865 (incidentally, it seems that J.B. Listing may have discovered it a few 

months before). He considered only those surfaces which can be embedded in three-

dimensional Euclidean space (these are the surfaces that do not self-intersect). The 

treatment given by Camille Jordan (1838–1922), a French mathematician, in 1866 

concentrated more on the different types of closed paths that can be drawn on a surface; 

in today‟s language that corresponds to looking at the homotopy groups of the surfaces, 

but although Jordan was on his way to becoming a leading figure in group theory he did 

not use that concept in these papers. 
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Figure 2. Torus with non-separating closed curve 

 

3.2. Complex Function Theory and the Birth of Manifolds 

 

Remarkably, ten years before this work was done, in his ground-breaking study of 

complex function theory and the integrals of algebraic functions, which redefined the 

theory of analytic functions in the 1850s, Riemann had shown that every algebraic 

function gives rise to an orientable surface with no boundary and that the properties of 

complex functions on the surface depend solely on the topological type of the surface. 

This made the classification of surfaces of immediate relevance to the study of major 

problems in complex function theory. His argument was that when one draws closed 

curves on an orientable surface one of two things happens: either the closed curve 

divides the surface into two pieces, as it necessarily does on the sphere or the disc, or it 

need not (this can happen on, for example, a torus).  

 

Riemann‟s work invited generalization to higher dimensions, and this problem was 

taken up after Riemann‟s death in 1866 by his Italian friend Enrico Betti (1823–1892). 

In 1871 Betti began the study of k -dimensional subsets of Euclidean n -dimensional 

space. Following Riemann he tackled the problem by considering how these subsets can 

be chopped up into basic pieces by systems of   1k  -dimensional cuts. But the great 

difficulties inherent in this work not only prevented Betti from getting very far, they 

also blocked progress for a long time. Decisive advances only came when Poincaré took 

up the subject in the 1890s. He had found it necessary to study higher-dimensional 

spaces in his work on celestial mechanics and in his study of Riemann surfaces, and 

thus motivated he spent much of the 1890s and early 1900s developing a constructive 

definition of manifolds which permitted him to deduce, or at least conjecture, many 

results. His work inspired others to join in and the first theorems on manifolds in 

dimensions greater than 2 date from this period. 

 

However, on any orientable surface the process of drawing loops that do not divide the 

surface into two must stop, which it does when any new loop divides the surface, and 

when it does an odd number of loops, say 2 1p   , has been drawn (counting the first 

dividing loop). This number, which is 1 for a sphere, 3 for a torus, and so on, Riemann 

called the order of connectivity of the surface. If the surface is furthermore closed, i.e. it 
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is of finite extent in space and has no boundary components, then the order of 

connectivity is related to the Euler characteristic of the orientable surface via the 

formula 2 2 p   . Möbius made no reference to Riemann‟s ideas in his paper, but 

Jordan was undoubtedly responding to Riemann‟s dissections of surfaces. 

 

3.3. Fourier Series and Topology of Point Sets 

 

At the same time, the study of real analysis was raising more and more delicate yet 

fundamental questions that directed attention to the behavior of sets of points on the real 

line or in the plane. Many of these questions arose in the study of Fourier series. The 

French mathematician Jean Baptiste Joseph Fourier (1768–1830) had claimed in 1822 

that any function ( )f x with period  2  can be written as a series of sines and cosines in 

the form 

 

0

1

( ) cos( ) sin( )
2

k k

k

a
f x a kx b kx





   , (1) 

 

where ( )cos( )ka f x kx dx



   and ( )sin( )kb f x kx dx




  . The first mathematician to 

give a rigorous proof of anything like that claim was the German mathematician Peter 

Gustav Lejeune Dirichlet (1805–1859) in 1826, when he showed it was true for 

functions that are made up of a finite number of pieces where the function is monotonic 

(either increasing or decreasing) and that have only a finite number of points where their 

values jump. This proof invited mathematicians to investigate what happened when 

these conditions are broken, and to discover classes of functions with more and more 

disparate behavior. 

 

Riemann, who studied under Dirichlet and learned a lot from him, was able to exhibit 

functions that do not have Fourier series representations, and others that agree with their 

Fourier series representations at only some points in their domains of definition. He 

found integrable functions that are discontinuous at infinitely many points in any 

interval. His work inspired a number of mathematicians to try to understand these new 

types of function, among them the German mathematicians Eduard Heine (1821–1881) 

and Georg Cantor (1845–1918). Heine showed that there was some hope that Fourier‟s 

claim could be proved even when a function has infinitely many points where it has 

jumps, provided that these jumps can be contained in intervals of arbitrarily small size. 

But if the function jumps at every point where 1/x n , what happens at the point 

0x  ? The point 0x   is a limit point of the previous ones, in the sense that any 

interval containing the point 0x  contains a point of the form 1/x n . In this case, the 

limit point is harmless, but there are sets whose sets of limit points can be much larger 

than the original set (we shall give an example below) –  what about them? 

 

Cantor was interested in the question of when a function has a unique Fourier series. He 

was able to show that the behavior of a point set, call it S , where a function jumps is 

reflected in the behavior of the set of limit points of the set S , which he called 'S . 

Indeed, he showed that the Fourier series of a function is unique provided that one of 
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the sets , ', '', ''',S S S S , vanishes, where ''S  is the set of limit points of the set 'S , and 

so on. 

 

Cantor gave definitions of two extreme cases involving a set and its set of limit points. 

If a subset S  of an interval I  on the real line is such that the set of its limit points 'S  is 

the whole interval I  he said that S  was a dense subset of I or an everywhere dense 

subset of I . If however the set of limit points 'S  of S  is such that no interval J  

however small is contained in 'S , the set S  was said to be nowhere dense in I .  

Intuitively, an everywhere dense set is unavoidable in the sense that any interval J  

contained in I  contains limit points of S  and a nowhere dense set is readily avoidable 

because no subinterval of I  lies wholly in the limit set of S . 

 

3.4. The Cantor Set 

 

The famous Cantor set, introduced by him in 1883, is a good example of an infinite 

nowhere dense subset of the unit interval. It is defined iteratively. Start with all the 

points in the unit interval [0, 1] and throw out the points in the open middle third, (1/3, 

2/3). Next, throw out the open middle thirds of the remaining two intervals, and 

continue in this fashion. What remains is the Cantor set. It can be best understood using 

what are called ternary „decimals‟ (the analogue of decimal numbers but in base 3, not 

base 10). For example, the number 0.0102110122  is such a number, and every point 

of the unit interval can be written as a ternary „decimal‟. Throwing out the middle third 

corresponds to throwing out the ternary „decimals‟ that start with a 1. At the next stage 

those ternary „decimals‟ beginning either 0.01or 0.21are thrown out. What is left is all 

those ternary „decimals‟ with no 1 in their expansion. Since whole intervals are thrown 

out at every stage it is intuitively likely that the Cantor set is nowhere dense in the unit 

interval and this is indeed the case. 

 

Interestingly, however, Cantor was confused about the implications of this set. Recall 

that the overriding question was the accuracy of a Fourier series representation. 

Mathematicians were looking for a characterization of the point sets in the real line at 

which a function could fail to be continuous without this affecting their Fourier series, 

and many examples suggested that the right characterization was that these “bad” point 

sets would be precisely the nowhere dense ones.  

 

However, in a paper written in 1875, so well before Cantor‟s but that, unfortunately, 

nobody read, the Irish mathematician Henry Smith (1826–1883) had shown that this 

could not be so. Not only did he define a Cantor set in this paper, he gave examples to 

show that there are sets like the Cantor set that are nowhere dense and others that are 

not. This confusion could not be resolved until there was a clear distinction between the 

topological theory of point sets and a theory of what point sets can be ignored for the 

purposes of integration, and the latter had to wait for work in 1902 to 1906 with the 

creation of measure theory by the French mathematician Henri Lebesgue (1875–1941). 
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