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Biographical Sketch
Summary

This chapter follows the developments in algebra and analysis that eventually led to the
creation of a new branch of geometry with focus on the qualitative aspects of geometry,
originally termed analysis situs, or geometria situs, by Leibniz, but since 1836 better
known under the name topology, suggested by the German mathematician Listing.

1. Introduction

In a memoir of 1679, the German philosopher Gottfried Wilhelm Leibniz (1646-1716)
set himself the goal of formulating some fundamental properties of geometrical figures,
using special symbols to represent them, and combining these properties to mére others.
He called his studies analysis situs, or, geometria situs. It is slightly unclearwrat he
meant, but in a letter to Huygens 1679 he explained that he“was unsatisfied | vitivie way
coordinate geometry handles geometrical figures becausesit Involvegrqueditities. Leibniz
searched for another form of analysis “which is truly geaaietiical iy expressing position
(situs) directly, in the same way as algebra expresses mag iituds’.

Leibniz did not immediately stimulate any/newsdeweloprient: with his vague ideas, but
in 1735, the Swiss mathematician Leentiard Euler £1707-1783) published an article
with the title Solution of a problem from georetria sitisFhe article provides a solution
to the problem known as the Konigsberges bridge sarcalem, and the title of the article
clearly indicates that Euler consitieses it to be a wghitrivution in the spirit of the ideas put
forward by Leibniz. Today ori2 wou'd prokably say that Euler misunderstood Leibniz’s
intentions by referring tg”mis nwwastigatioris, as /4 contribution to geometria situs. The
solution to the Konigsberger | ridgesproblem 1s nowadays counted as the first proper
contribution to graph theary;“althoughscular makes no mention of the notion of a graph
in either this or izany othir of his papess.

Euler did, howevars/make o pioneering contribution in the field of analysis situs. His
proof of tii="Cerhinatorial property of the surface of a convex polyhedron, known as the
Euler’s p&lyredron fezimula, in an article of 1750, clearly belongs to the study proposed
by Leihniz) If yotissouri, the number V of vertices, the number E of edges, and the
number " of face./on the surface of a convex polyhedron, then the alternating sum
V —E+F =2 #Culer’s proof of this formula is now counted as the first proper
contribution to,axalysis situs. The formula was certainly known by 1639 to the French
philosopher and mathematician René Descartes (1596-1650) and through his
unpublished manuscript also to Leibniz in 1675. (Presumably, the formula was known
already to Archimedes (287-212 BC).).

In a letter dated April 1%, 1836, the German mathematician Johann Benedict Listing
(1806-1882) suggested the name topologie for the study of geometrical figures
following Leibniz. In print, the new name topology was used for the first time in the
book Vorstudien zur Topologie, published by Listing in Gottinger Studien 1847. The
word derived from ‘topos’, the Greek expression for place or location, and ‘logos’,
meaning words for, or the study of, something. The name analysis situs was still
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commonly used for qualitative studies of geometrical objects in the first half of the 20"
century, but from about 1950, the name topology has been used exclusively.

In the late 19" and early 20™ centuries topology gradually replaced geometry as the
fundamental domain for large parts of mathematics. So we begin by looking at the
dramatic state of research in geometry in the late 19" century, and we follow the
developments that led first to the creation of a topology of manifolds, then to a renewed
interest in axiomatic geometry. Then we look at the roots of topology. To this day
topology has two identifiable overlapping parts: one often called algebraic topology and
the other point-set topology. Algebraic topology has its roots in a geometric approach to
complex analysis; point-set topology grew out of a variety of problems in real and
complex analysis.

2. Three Visions of Geometry in the late Nineteenth Century

Geometry went through two major changes in the 19" ceiftury, or rathef it exfrefienced
two major challenges, one largely successful and the otleat rirst reburidd. In 1800 the
subject was largely confined to Euclidean geometry in_taGand theedimensions, often
taught according to the pattern laid down in texts of Luc/id’s Fiemeatsaas it was in the
influential text book Eléments de Géométrie by %.egendre) ar'in tha more algebraic style
introduced in the 17" century by Descartes/(Caitesiz or £0oriinate geometry).

Gaspard Monge (1746-1818) in Paxs was aiso inteies:eein the projections of solid
figures onto planes, for the use of engiriaers’and arciitects, and in the 1810s and 1820s a
number of French geometers, #mestly”his formessstuaents at the newly-founded Ecole
Polytechnique, promoted a siudy cf the groperties that geometric figures share with
their shadows. The mos¥ iinpostadit of these was Jean Victor Poncelet (1788-1867)
whose Traité des Propiiétés hrojestives des figures of 1822 showed how this new
geometry, called projective"geomeunscould unify, simplify, and extend the study of
conic sections.

2.1. Projective Crorietry Qs 2'rundamental Geometry

Contemparasies fouitiwsomerof Poncelet’s methods unconvincing; however, another
French geC metergMictial Chasles (1793-1880), showed how to replace them with a
systemau< use of vas'1iivariance of cross-ratio under projection. The cross-ratio of four
points A, Bf C+R "on a line can be defined in various ways, all of them equivalent to
AB-CD
AD-CB

, and 11 these four points are projected (see the figure below) to the four points

AB-CD A'B-C'D’

A',B',C’,D’ on another line then the cross-ratios are equal: = :
AD-CB A'D-C'B'

In some sense this property of four collinear points in projective geometry plays the role
of distance, the separation between two points on a line, in Euclidean geometry. The
same approach was also adopted independently by the Swiss mathematician Jakob
Steiner (1796-1863), who taught projective geometry in Berlin, and projective
geometry steadily became accepted as a fundamental new approach to geometry.
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AB-CD A'B-C'D'
AD.CB A'D-C'B'

Figure 1. Cross-ratio under projection

The properties a figure shares with its shadows are nbt swaay. It isteagy=te see that
lengths are not shared — a shadow of a line segme#it'can, ba”many diffesent lengths —
and Poncelet called his new geometry non-metrica!* 1o} that feasén. Fhis is quite a
paradoxical name, since geometry, after allqmeans=ine nrieasure or the earth, and
geometry would seem to be about measurea=iangths: Neitiens do the angles in a figure
agree with those in its shadows. But if a lit e metts a curve i three points their shadows
meet in three points, and if a line touckies a cuese theil shadows touch. The properties of
intersection and tangency are shared; @%e says theyarecnvariant under projection. And,
as we have seen, there is a possihly unexpected proparcty of four points on a line: they
have a cross-ratio that is preserviad undsiproyection. A projective property is by
definition one that is the samiy forra figuie ang any of its images under a projective
transformation. Projectiv2 geometry is the stady of the projective properties of figures
and because projectiwerpraneres ate adtomatically true in Euclidean geometry it was
gradually agreed .by.tie Middle of t'e #9™ century that projective geometry is more
fundamental th«in Euclic€an o20iatry,

2.2. Non-Guclicean Ged wetiv and Physical Space

At the sare time_ thezlate 1820s and early 1830s, Euclidean geometry was facing
anotherpand arguchlymore fundamental challenge, but one that was held at bay for a
further genefation.". This began as a concern about the nature of straight lines, in
particular paratlel’lines (by definition, parallel lines are lines that never meet). The
account of theni'in Euclid’s Elements leads naturally to the idea that two parallel lines in
a plane are everywhere the same distance apart. Janos Bolyai (1802-1860) in what is
now Hungary, Nicolai Ivanovich Lobachevskii (1793-1856) in Kasan in Russia, and
Carl Friedrich Gauss (1777-1855) in Gottingen, Germany, all investigated a geometry
in which some pairs of straight lines might draw closer and then diverge and so never
meet, and other pairs would draw closer and closer but still never meet, much as do the
hyperbola and its asymptotes. However, Gauss, who was the dominant mathematician
of his time, never published his ideas. Bolyai did, but only obscurely, and Lobachevskii,
who did publish, found that his ideas were ignored. Had Gauss taken them up and lent
his name to them, matters might have been different, but he gave them only half-hearted
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support, and it was left to mathematicians of the next generation (after Gauss, Bolyai
and Lobachevskii were dead) to appreciate what they had done.

In particular, Bolyai and Lobachevskii had shown that a new geometry was possible,
one that differed from Euclidean geometry in just one respect (the nature of parallel
lines) but which had a perfectly good concept of length and angle and could in fact be
the correct geometry of physical space. Indeed, they discovered a family of such
geometries that depended on a parameter and had Euclidean geometry as a limiting case
(when that parameter took the value 0).

Attempts to determine this parameter all failed, because it was soon clear that it must be
very close to zero and too close to measure at the time, but the much more important
point was that the new geometry was possible at all. It followed that Euclidean
geometry could not be a priori true, as had hitherto been thought. It wassSurely this
challenge to a deeply held belief that caused non-Euclidean geometrv (o2”the new
geometry came to be called) to be so strongly resisted.

2.3. The Kleinian View of Geometry

Matters changed when the German mathematician Friedrich Berihard Riemann (1826—
1866), who had briefly studied with Gayss 11, Géttingan, rroposed that geometry is
simply the study of a space of pointsswith a concent o1*istance. In his habilitation
lecture in Gottingen of 1854 with thefutls*"Uver die Fypoihesen, welche der Geometrie
zugrunde liegen"”, published only poscaupiously 113,1¢67, Riemann showed how this
program, which was a vast gepcralization of idees due to Gauss in the 1820s, could be
made to work. He indicated i1 pass'ng hotv to virdicate non-Euclidean geometry, and
he was followed by the ltziian rvatiiematicica Eugenio Beltrami (1835-1900).

Both men argued that just as"a descsinuon,of the Earth in an atlas makes it possible to
navigate on the(sprierica:) Easth ana“s0 do geometry on a sphere, so too there is a
description in {n “atlas”, whiCijthiaydescribed explicitly in formulae, of non-Euclidean
geometry. Thig newsaescription eliminated doubts about non-Euclidean geometry in the
minds of i.durerhaticians Y phiiasophers followed only slowly).

On tie besis of "Reltrami’s “atlas”, in which curves of shortest length in two-
dimensional nan-EuClicean geometry appear as straight chords inside a fixed circle,
Felix Klein Ghawedin the early 1870s how non-Euclidean geometry can be regarded as
a special case of #rojective geometry. This gave him a way in which to proclaim that all
the known geometries (Euclidean and non-Euclidean) are special cases of projective
geometry; he did not know then about what is called affine geometry, but it fits in very
naturally. Klein’s unification of geometry became well-known when it was republished
in the 1890s in several languages, by which time other mathematicians had made great
strides in the study of geometry, and it is still called the Kleinian view of geometry.

It emphasizes that any geometry is the study of a space and a group of transformations

that move figures around in that space without altering the fundamental properties of
that geometry. If those properties are the projective ones the transformations are the
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projective transformations; if they preserve distance they are the metrical
transformations of Euclidean or non-Euclidean geometry.

2.4. Geometry in Spaces of any Number of Dimensions

Although the Kleinian view of geometry did well, the Riemannian viewpoint is much
more diverse and, arguably, more profound. It allows for geometries in spaces of any
number of dimensions, and of a variety of shapes. One can, for example, study
geometry on a torus, or on what is called a Riemann surface (the surface in four-
dimensional space defined by an algebraic equation in two complex variables). In this
connection in 1880 the young French mathematician Henri Poincaré (1854-1912) made
the remarkable discovery that all but the simplest Riemann surfaces naturally acquire
non-Euclidean geometry, thus showing that non-Euclidean geometry has a major role to
play in the study of complex function theory. The study of spaces with geom«iry locally
like Euclidean geometry but globally different (such as the torus) proceeded=‘apiilly in
the second half of the 19" century as a study of a variety of mathematica’ objeCts that
can be given coordinates. This study remained, howsever ‘zithersa wfanch of pure
mathematics or a tool in mechanics, and it was ngt seriotsiy thetight at this time that
physical space could be other than Euclidean or non-euclidean

2.5. The Search for an Axiomatic FoundatiornorGeomttry

One reasonable reaction to all thesq nexv geometries waa,10 wonder what had gone
wrong: how could all those textboors piodeled wn “zuclid’s Elements have misled
mathematicians and made thers=isiiacd’o the newyzossiuilities? A critical re-examination
of the arguments of such bocks, ar cient ghd moaern, led mathematicians to the view
that such books were dirierently” flawec, Moritz Pasch (1843-1930), a German
geometer, was among tiose v'ho thought it would be better to start again and give
projective geometry” and, ‘Cuclidean,geometry new axiomatic foundations. He was
followed by a ptmuer ¢/ mathematividns in Italy who gravitated around Giuseppe
Peano (1858-€937), or whoii M asiosieri (1860-1913) was the most active.

They gave, Tigenus abstiast uxiomatic foundations for these geometries that, unlike
Pasch, madewo appedrta aur beliefs about space and the objects in space. Their work
proved, less influgntial, wowever, than that of David Hilbert (1862-1943), the German
mathematician,wha¢ With Poincaré, dominated mathematics at the start of the 20"
Century. Hitbestnaiso gave foundations of these geometries, but in so doing he
successfully prorioted the idea that the study of axiom systems was likely to be
applicable across the whole of mathematics. This broad ambition, coupled with his
powerful academic position and his brilliance in many other domains of mathematics,
led to Hilbert’s axiomatic geometries being the ones that are best remembered today.

3. Main Roots to Topology
By the end of the 19" century geometry was firmly associated with the idea of
transformations of figures and the properties of figures that are unaltered by such

transformations. Simultaneously but in other branches of mathematics transformations
were being studied, and properties invoked, that were to prove much more fundamental.
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These are associated with the name of topology. Topology has two main roots: one is
algebraic and grew out of complex function theory; the other has to do with sets of
points and grew up in both real and complex analysis.

3.1. The Classification of Surfaces

A key early success in the algebraic tradition was the classification of surfaces. The
concept of a surface is an intuitive one, and the work of numerous mathematicians at the
start of the 19™ century led to the conclusion that surfaces can be distinguished by three
characteristics. The first is obtained by drawing a net of curves on a surface that meet
only at points (called vertices). This net must also divide the surface into disc-shaped
regions (called faces) separated by the curves (called edges).

It turns out that however this is done, if you count the number V of véitices, the
number E of edges, and the number F of faces on a given surface, then thesaiier ating
sum V —E+F always gives the same value y . The quartity y =V /E - F 5 called
the Euler characteristic of the surface. It is 2 for the, spiiere’ 1 foi thedisc, 0 for the
torus, and so on. A surface may also have a nurlbesaf “holes’, of, samewhat more
precisely, end in a number of distinct boundaries. This sumb<s, is aisg’used to classify
surfaces. The third property is a little more_elusives It was, to wern out that there are
surfaces that do not permit one to define tte novorof ‘ciackivise’ turning in a coherent
way along the surface.

The simplest of these is the Mobius baadswhich is'abiained from a thin strip of paper
that has been given a half-twist Gafére one rain®f opposite edges are glued together.
Such a surface is said to be ncn-origntable( surfazes that permit one to define clockwise
turning in a coherent way‘are carca orientac'e.

It was to turn out (hatsaurtaces wrign have the same Euler characteristic, the same
number of bounsary componeriis, and cie either both orientable or both non-orientable
are topologicaryz£quivalent’ I''wo'suitfaces are topologically equivalent if each can be
mapped onto e uthier ina vae-to-one correspondence of points such that nearby points
stay nearbyi(Irriore mathiemadical terminology, the maps between the surfaces are to be
continuouy).

The two matitemaicians most responsible for this classification of surfaces worked
independentiy&”1 12 "German mathematician A.F. Mobius (1790-1868) published his
account in 186&+ncidentally, it seems that J.B. Listing may have discovered it a few
months before). He considered only those surfaces which can be embedded in three-
dimensional Euclidean space (these are the surfaces that do not self-intersect). The
treatment given by Camille Jordan (1838-1922), a French mathematician, in 1866
concentrated more on the different types of closed paths that can be drawn on a surface;
in today’s language that corresponds to looking at the homotopy groups of the surfaces,
but although Jordan was on his way to becoming a leading figure in group theory he did
not use that concept in these papers.
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Figure 2. Torus with non-separating closed curve
3.2. Complex Function Theory and the Birth of Manifolds

Remarkably, ten years before this work was dori2_fihis greundsoreaking study of
complex function theory and the integrals of algebraicsiuncticas, wiaich redefined the
theory of analytic functions in the 1850s,.Riemans hadsshowrinthat every algebraic
function gives rise to an orientable surfac{ with:no bouridary and that the properties of
complex functions on the surface depsfid salely on tire.topalogical type of the surface.
This made the classification of surfazes’of immediate »elevance to the study of major
problems in complex function theory, Wis argumergwas that when one draws closed
curves on an orientable surfaCe cpe of twesthings happens: either the closed curve
divides the surface into two_piaces, /s it necessaiily does on the sphere or the disc, or it
need not (this can happen on, far examnle, atards).

Riemann’s work  irizit€uigeneralization 40 higher dimensions, and this problem was
taken up after Piemana’s death ia 1866 by his Italian friend Enrico Betti (1823-1892).
In 1871 Betti bagan e stady of “-dimensional subsets of Euclidean n-dimensional
space. Follawiia Riemar(s, hettackled the problem by considering how these subsets can

be choppaa™ip into kasic pieses by systems of (k—l) -dimensional cuts. But the great

difficulties inherefv.in tais work not only prevented Betti from getting very far, they
also blocked progross tor a long time. Decisive advances only came when Poincaré took
up the subjict dmtiie 1890s. He had found it necessary to study higher-dimensional
spaces in his work on celestial mechanics and in his study of Riemann surfaces, and
thus motivated he spent much of the 1890s and early 1900s developing a constructive
definition of manifolds which permitted him to deduce, or at least conjecture, many
results. His work inspired others to join in and the first theorems on manifolds in
dimensions greater than 2 date from this period.

However, on any orientable surface the process of drawing loops that do not divide the
surface into two must stop, which it does when any new loop divides the surface, and
when it does an odd number of loops, say y =2p+1, has been drawn (counting the first
dividing loop). This number, which is 1 for a sphere, 3 for a torus, and so on, Riemann
called the order of connectivity of the surface. If the surface is furthermore closed, i.e. it
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is of finite extent in space and has no boundary components, then the order of
connectivity is related to the Euler characteristic of the orientable surface via the
formula y =2—-2p . Mobius made no reference to Riemann’s ideas in his paper, but

Jordan was undoubtedly responding to Riemann’s dissections of surfaces.
3.3. Fourier Series and Topology of Point Sets

At the same time, the study of real analysis was raising more and more delicate yet
fundamental questions that directed attention to the behavior of sets of points on the real
line or in the plane. Many of these questions arose in the study of Fourier series. The
French mathematician Jean Baptiste Joseph Fourier (1768-1830) had claimed in 1822
that any function f (x) with period 2z can be written as a series of sines and cosines in

the form

|

f(x)=—+ i a, cos(kx) + b, sin(kx), Q)

2

where a, = jf f (x)cos(kx) dx and b, = f f (x)sin(kdx . Tl firsasflathematician to

give a rigorous proof of anything like that/Ciaim“was the/dserman‘mathematician Peter
Gustav Lejeune Dirichlet (1805-1859) ‘n 18:6, whenyhe showed it was true for
functions that are made up of a finitesiumbemei pieces Wwhere the function is monotonic
(either increasing or decreasing) and tivat hawe only'a fiiite number of points where their
values jump. This proof invited, matheriaticians 0 “nvestigate what happened when
these conditions are broken, £nd tG discov£i classes of functions with more and more
disparate behavior.

Riemann, who studizG*uncesDiriciltetsand learned a lot from him, was able to exhibit
functions that do nowlwave Fourier serias sepresentations, and others that agree with their
Fourier series depreseivationssatvanly»some points in their domains of definition. He
found integrablet functiond, that are discontinuous at infinitely many points in any
interval. lgisacek “inspired, aaumber of mathematicians to try to understand these new
types of*€urigtion, amiaa them the German mathematicians Eduard Heine (1821-1881)
and Georg Cantor(1843-1918). Heine showed that there was some hope that Fourier’s
claim cewid be praveaseven when a function has infinitely many points where it has
jumps, provided.the! these jumps can be contained in intervals of arbitrarily small size.
But if the functich jumps at every point where x=1/n, what happens at the point
x=07? The point x=0 is a limit point of the previous ones, in the sense that any
interval containing the point x =0 contains a point of the form x=1/n. In this case, the
limit point is harmless, but there are sets whose sets of limit points can be much larger
than the original set (we shall give an example below) — what about them?

Cantor was interested in the question of when a function has a unique Fourier series. He
was able to show that the behavior of a point set, call it S, where a function jumps is
reflected in the behavior of the set of limit points of the set S, which he calledS".
Indeed, he showed that the Fourier series of a function is unique provided that one of
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the setsS,S,S",S™ .., vanishes, where S" is the set of limit points of the setS", and
SO0 on.

Cantor gave definitions of two extreme cases involving a set and its set of limit points.
If a subset S of an interval | on the real line is such that the set of its limit points S' is
the whole interval | he said that S was a dense subset of | or an everywhere dense
subset of 1. If however the set of limit points S' of S is such that no interval J
however small is contained inS"', the set S was said to be nowhere dense in 1| .
Intuitively, an everywhere dense set is unavoidable in the sense that any interval J
contained in | contains limit points of S and a nowhere dense set is readily avoidable
because no subinterval of 1 lies wholly in the limit set of S.

3.4. The Cantor Set

The famous Cantor set, introduced by him in 1883, is a_good example=af an irfinite
nowhere dense subset of the unit interval. It is definel itesatively. Ttartaadth all the
points in the unit interval [0, 1] and throw out the pgiats In the opsi micdle third, (1/3,
2/3). Next, throw out the open middle thirds ol th€ yemaining,Lwosintervals, and
continue in this fashion. What remains is the Cantor sat#t can’we beswanderstood using
what are called ternary ‘decimals’ (the analaguciof decimsai™aumuers but in base 3, not
base 10). For example, the number 0.01071101.32.". is Suchfa number, and every point
of the unit interval can be written as asernany “decimiii, Thiowing out the middle third
corresponds to throwing out the ternasvs” degimalsd tha:4tart with a 1. At the next stage
those ternary ‘decimals’ beginning eithciy0.0149r (vz%ave thrown out. What is left is all
those ternary ‘decimals’ with /10 11 their pigpancion. Since whole intervals are thrown
out at every stage it is intuitivaly likely thit the Tantor set is nowhere dense in the unit
interval and this is indee( the case.

Interestingly, howetersCantor was ciinfiéed about the implications of this set. Recall
that the overriging guabtion_wwas the  accuracy of a Fourier series representation.
Mathematiciansw@eresiookifig 1or cwCharacterization of the point sets in the real line at
which a functien csuld il v be continuous without this affecting their Fourier series,
and maity exxamples siggesitad hat the right characterization was that these “bad” point
sets avoulathe preciselytriesnowhere dense ones.

However, insapapcr written in 1875, so well before Cantor’s but that, unfortunately,
nobody reaGy=tiie rish mathematician Henry Smith (1826-1883) had shown that this
could not be s&iNot only did he define a Cantor set in this paper, he gave examples to
show that there are sets like the Cantor set that are nowhere dense and others that are
not. This confusion could not be resolved until there was a clear distinction between the
topological theory of point sets and a theory of what point sets can be ignored for the
purposes of integration, and the latter had to wait for work in 1902 to 1906 with the
creation of measure theory by the French mathematician Henri Lebesgue (1875-1941).
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