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Summary 
 
A survey of the number concept, from its prehistoric origins to its many applications in 
mathematics today. The emphasis is on how the number concept was expanded to meet 
the demands of arithmetic, geometry and algebra. 

1. Introduction 

The first numbers we all meet are the positive integers 1, 2, 3, 4, … We use them for 
counting – that is, for measuring the size of collections – and no doubt integers were 
first invented for that purpose.  Counting seems to be a simple process, but it leads to 
more complex processes, such as addition (if I have 19 sheep and you have 26 sheep, 
how many do we have altogether?) and multiplication ( if seven people each have 13 
sheep, how many do they have altogether?).  Addition leads in turn to the idea of 
subtraction, which raises questions that have no answers in the positive integers. For 
example, what is the result of subtracting 7 from 5? To answer such questions we 
introduce negative integers and thus make an extension of the system of positive 
integers. 
 
The introduction of negative integers is just the simplest of many possible extensions of 
the number concept. Some of these extensions were made in response to the demands of 
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arithmetic (What is 5 minus 7? What is 5 divided by 7?). Others are responses to the 
demands of geometry to measure lengths, areas, and volumes. Measuring is quite a 
different problem from counting, because the range of answers is continuous rather than 
discrete. A person can own 6 or 7 sheep, but no number in between, whereas the length 
of a stick can be 1 metre, 2 metres, or any number in between. So what are the numbers 
between 1 and 2? 
 
Filling the number gap between 1 and 2 amounts to bridging the conceptual gap 
between discrete and continuous, or between counting and measuring. It is the most 
profound problem in developing a comprehensive concept of number. Other problems 
arise along the way, but the problem of continuity stretches through most of the history 
of mathematics, and continues to affect the subject from top to bottom today. Our story 
will therefore be dominated by the search for continuity, though that is not our only 
theme. 
 
The second theme is the search for arithmetic, that is, for systems of objects we can add, 
subtract, multiply and divide, subject to the usual rules of calculation. This of course 
forces us to decide what are the usual rules, and leads to the discovery that systems 
satisfying with “usual” rules are surprisingly rare.  

2. Arithmetic 

Since positive integers arise from counting, we can define them as the objects obtained 
by starting with 1 and repeatedly adding 1. The process of adding 1, called the successor 
operation, is not only the genesis of numbers, but of all facts about numbers. To prove a 
fact about all positive integers it suffices to prove that: 
 
a. The fact is true for 1 
b. If the fact is true for any positive integer n then it is true for n+1. 
 
This method of reasoning is proof by induction, and it is the basis for all proofs in 
number theory, as was first pointed out in 1888 by the German mathematician Richard 
Dedekind in his book Was sind und was sollen die Zahlen? (roughly, What are numbers 
and what are they for?) . 
 
Alongside proof by induction we have definition by induction, an idea that goes back to 
Dedekind’s compatriot Hermann Grassmann (in a textbook of arithmetic intended for 
high school students!) in 1861. Grassmann observed that a function f is defined for 
all positive integers as soon as: 
 
a. The value f(n) is defined for n=1 (or n=0, if that is a better starting point). 
b. The value f(n+1) is defined in terms of f(n). 
 
For example, the sum function m+n is defined for all positive integers (and zero) by 
defining m+0, then each of the values m+0, m+1, m+2, … in terms of the one before: 
 
a. m+0 = m, for all numbers m. 
b. m+(n+1 )= successor of  m+n = (m+n)+1. 
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Then the product function mn is defined, with the help of sum, by successively defining 
m·0, m·1, m·2, … as follows. 
 
a. m·0 = 0. 
b. m(n+1) = mn+m. 
 
Grassmann then went on to pave the way for Dedekind by proving (by induction) the 
basic rules of arithmetic: 
 
a+b = b+a, ab = ba, 
a+(b+c) = (a+b)+c, a(bc) = (ab)c, 
a+0 = a, a ·1 = a, 
a(b+c) = ab+ac. 
 
Probably no one before Grassmann had thought it helpful to prove the rules of 
arithmetic, and the mind boggles at the thought of teaching such proofs to children. 
Nevertheless, Grassmann was onto something important: the rules of arithmetic for 
positive integers have a common origin in the nature of counting. This simple 
foundation also serves for subsequent extensions of the number concept, to which we 
will soon turn. 
 
But first I want to point out that sum and product of positive integers are already very 
sophisticated operations. In fact, they are the source of some of the hardest problems in 
mathematics. To see how this comes about, let us recall the concepts of divisibility and 
prime numbers, both of which stem from the concept of product for positive integers. If 
a, b, c are positive integers and 
 
a = bc  
 
then we say that a is divisible by b, or that b divides a, or that a is a multiple of b. For 
example, the number 30 is divisible by 1, 2, 3, 5, 6, 10, 15, and 30. On the other hand, 
the number 31 is divisible only by 1 and 31. A positive integer greater than 1, and 
divisible only by itself and 1, is called a prime number. Thus the first 25 prime numbers 
are 
 
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. 
 
It is hard to see any pattern in this sequence. Indeed the prime numbers are defined by 
their avoidance of simple patterns; they avoid the multiples of 2 (after 2 itself), they 
avoid the multiples of 3 (after 3 itself), and so on. Because of this lack of pattern, it is 
not even clear whether the sequence of prime numbers continues forever, though in fact 
it does, as Euclid proved in his Elements around 300 BCE. An even harder question is 
whether there are infinitely many pairs of primes (called twin primes) that differ by 2.  
One can see several such pairs in the list above, for example 5, 7 and 29, 31 and 71, 73, 
but it is not known whether such pairs keep appearing forever. 
 
Now the concept of prime number is defined in terms of divisibility, and hence in terms 
of the product operation. For the concept of twin prime we need the idea of adding 2, 
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and hence the sum operation. Thus the question whether there are infinitely many twin 
primes is a question about sums and products of positive integers.  In fact, there is an 
inexhaustible supply of hard questions about sums and products, but I think the twin 
primes question illustrates the point well enough: arithmetic is not trivial! 
 
It is, however, possible to make arithmetic a little easier to manage by extending the 
concept of integer to include negative integers and zero. We can then solve any equation 
of the form 
 
x+a = b 
 
for x when a and b are any integer, namely x = b − a. If, say, b = 1 and a = 5 then  
 
x = 1 − 5  = − 4. 
 
The negative integer −4 is the reverse or inverse of 4 in the sense that 
 
4 + (−4) = 0, 
 
and in general every positive integer m has an inverse −m such that m + (−m) = 0. 
The negative integers and zero “complete” the positive integers with respect to the 
subtraction operation, because m − n is an integer for any positive integers m and n. 
 
Of course, these new integers do not arise from counting the number of objects in a 
collection, as the positive integers did, but they have other everyday uses. In cold 
countries one needs negative numbers to measure temperature relative to freezing point, 
and in all countries there are people with a negative bank balance. 
 
There is a further extension of the integers that completes them with respect to division. 
For each nonzero integer a we introduce the reciprocal or multiplicative inverse of a, 
1/a. The reciprocal enables us to solve any equation of the form 
 
ax = b, 
 
where a and b are integers and a is nonzero. The solution x = b(1/a) = b/a is called a 
rational number because it is a ratio of integers. The system of rational numbers is ideal 
for arithmetic because it is closed under the operations of addition, subtraction, 
multiplication, and division (by nonzero numbers). Along with the calculation rules for 
positive and zero integers listed above, it satisfies the following rules for inverses: 
 
a + (−a) = 0, a(1/a) = 1. 
 
In some sense, mathematicians have been aware of the rational numbers and their rules 
of calculation since ancient times, but the concept of a system of numbers and its rules 
did not emerge until the 19th century. Until this time, there was no dispute about the 
rules (though there was some dispute about the existence of negative numbers), and 
hence no need to discuss rules in general, because different concepts of  “addition” and 
(especially) “multiplication” had not yet come to light.  Also, until the 19th century, 
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questions about the nature of numbers were overshadowed by questions from geometry: 
what are length, area, and volume, and can these quantities be regarded as numbers? 
 
This explains the surprisingly late realization (by Grassmann and Dedekind) that the 
rules of arithmetic have their logical basis in the inductive nature of the positive 
integers, that is, in counting. Before the 19th century, all branches of mathematics were 
dominated by geometry, and one did not expect counting to be a basis for serious 
mathematics. In the next section, we discuss how geometry became dominant. 

3. Length and area 

The first bridge between numbers and geometry is the Pythagorean theorem – but it is a 
slippery bridge that the Pythagoreans were reluctant to cross. As all readers will recall 
from school, the Pythagorean theorem states that the sum of the squares on the two sides 
of a right-angled triangle equals the square on the hypotenuse. The theorem is 
illustrated by Figure 1. 

 

 
 

Figure 1: The Pythagorean theorem. 
 
It is also expressed by the equation 
 
a2  + b2 = c2, 
 
where a2, or “a squared,’’ denotes the square on side a,  b2 denotes the square on side  b, 
and  c2 denotes the square on the hypotenuse, c. However, we also interpret “a squared’’ 
as “a times a,” because we compute the area of  a square (or indeed, any rectangle) by 
multiplying the lengths of its perpendicular sides. For reasons that will soon become 
apparent, the Pythagoreans did not think this way. For them, a “square’’ was just a 
square. 
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The Pythagorean theorem was discovered in several ancient cultures – in particular, in 
Mesopotamia, China, and India – and in some cases a long time before the 
Pythagoreans, who lived around 500 BCE. However, it was the Pythagoreans or their 
Greek successors who discovered the most remarkable consequence of the theorem: the 
existence of irrational lengths, such as √2. 
 
The simplest right-angled triangle, with perpendicular sides of length 1, has squares of 
unit area on these sides, and hence a square of area 1 + 1 = 2 on its hypotenuse. The 
length of the hypotenuse is therefore √2, because √2 is the side of a square of area 2, by 
definition. Thus very simple geometry demands the existence of the length √2. 
However, √2 cannot be expressed as a ratio of positive integers, m/n, since this 
assumption leads to a contradiction.  
 
We do not know exactly when this contradiction was discovered, but it was common 
knowledge by the time of Aristotle, around 350 BCE. In his Prior Analytics, Aristotle 
feels it necessary only to mention that irrationality of √2 follows from consideration of 
even and odd numbers.  Presumably, the assumption √2 = m/n was known to contradict 
some simple facts, such as these: 
 

• The square of an odd number is odd. 
• Therefore, an even square is the square of an even number. 
• If √2 = m/n, then n2 = 2m2 is even, hence n is even, say n = 2k. 
• Then 2m2 = n2 = 4k2, so m2 = 2k2, hence m is also even. 
• But we can take the fraction m/n in lowest terms, with m and n not both even. 

 
But if √2 is not a rational number, what is it? The Greek view was that √2 is a length but 
not a number, and that lengths do not even “behave” like numbers. In particular, the 
Greeks viewed the product of two lengths a and b not as a length, but as a rectangle with 
perpendicular sides a and b.  Thus “√2 squared” was literally a square with sides of 
length √2, not a line of length 2. And “√2 cubed” was, you guessed it, literally a cube 
with sides of length √2. 
 
This is magnificently visual, but it is not arithmetic. Trying to decide when two products 
are equal is a headache – in what sense does the rectangle with sides √2 and √3 “equal” 
the rectangle with sides 1 and√6? – and the product of four or more lengths has no 
meaning at all, because we cannot visualize more than three dimensions. However, 
these are disadvantages only with hindsight.  
 
The Greeks were able to develop a vast amount of geometry without a proper arithmetic 
of lengths, so they never missed it. For example, they succeeded in defining equality of 
rectangles by “cutting and pasting”: rectangles are equal if it is possible to cut one of 
them into pieces that can be reassembled to form the other.  
 
In this sense the rectangle with sides √2 and √3 is equal to the rectangle with sides 1 and 
√6. It was only after arithmetic itself became more sophisticated, in the form of algebra, 
that it became possible to gain geometric advantages from arithmetic of lengths. 
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