
MATHEMATICAL PHYSIOLOGY - Microarray Data Analysis: Acquiring A Systemic View In Biology - Alessandro Giuliani 

©Encyclopedia of Life Support Systems (EOLSS) 

MICROARRAY DATA ANALYSIS: ACQUIRING A SYSTEMIC 

VIEW IN BIOLOGY 
 

Alessandro Giuliani 

Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 

29900161 Roma, Italy 

 

Keywords: Omics Sciences, Systems Biology, Multidimensional Statistics, Dynamics, 

Attractors, Reductionism vs. Holism. 

 

Contents 

 

1. Units and Variables: The Basic Nature of the Problem 

2. The Pessimistic Way (The Curse of Dimensionality) 

3. The Optimistic Way (The Blessing of Dimensionality) 

4. Conclusion: Where We Go From Here 

Glossary 

Bibliography 

Biographical Sketch 

 

Summary 

 

The last two decades witnessed a wide diffusion of the so-called high-throughput 

techniques in all the fields of biological research. Genome-wide expression platforms 

(microarray) are the by far most common high-throughput technologies and it became a 

standard in the biomedical research. Passing from the analysis of single gene expression 

levels, like in traditional molecular genetics, to the simultaneous analysis of more than 

twenty-thousands is provoking a complete re-shaping of the perspective we look at 

biology forcing scientists to acquire a systemic view. The description of different 

statistical analysis perspectives on microarray data is a privileged observatory for 

getting the sense of this change. The evolution leading from the efforts to get rid of the 

‘highly pathological’ situation (in terms of classical statistical methods) of having much 

more statistical units than random variables remaining in the realm of statistical 

orthodoxy to the consideration of the high dimensionality of gene expression data as a 

blessing instead of a curse and the consequent development of a ‘statistical-mechanics’ 

like approach to biology is the theme of this work. 

 

1. Units and Variables: The Basic Nature of the Problem 

 

A DNA microarray consists in an arrayed series of thousands of microscopic spots of 

DNA oligonucleotides, called features, each containing picomoles of a specific DNA 

sequence, known as probes (or reporters). This can be a short section of a gene or other 

DNA element that are used to hybridize a cDNA or cRNA sample (called target) under 

high-stringency conditions. A cell culture is grown over the microarray and, thanks to 

the Watson and Crick base pairing; each RNA molecule (cRNA) present in the culture 

binds to its correspondent probe on the array. Probe-target hybridization is usually 

detected and quantified by detection of fluorophore-, or chemiluminescence-labeled 

targets to determine relative abundance of the specific RNA molecule in the target. The 
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amount of fluorescence measured at each specific spot is thus a proxy of the amount of 

expression of the correspondent gene in the culture. Since an array can contain tens of 

thousands of probes, a microarray experiment can accomplish many tests in parallel. 

 

The aim of a typical microarray experiment is to give a characterization of the 

differences between k different biological samples (cell cultures, tissue specimens..) in 

terms of n gene expression profiles as measured by microarray technology. The above 

question suggests a natural statistical formalization in terms of biological samples as 

statistical units and single gene expression levels as random variables. An eventual 

hypothesis testing or discrimination task can be guided by the pertaining of biological 

samples to different classes (e.g. control and drug-treated samples, normal and 

pathological samples, different tissues samples….), this task is accomplished by the 

detection of statistically significant differences between the groups in the n –

dimensional space spanned by the n  microarray probes. A typical microarray 

experiment involves a value of k  going from 10 to 100, while n  is in the order of 

10000-30000. This poses a hard problem to classical inferential statistics that is based 

on the reverse situation of a much higher number of statistical units with respect to 

variables. To grasp the relevance of this point is important to go back to the birth of 

modern inferential statistics. 

 

Student, from where the world-wide famous Student’s t distribution derives its name, is 

the pseudonym of the famous English statistician William Gosset (1867-1932) that in 

1899 joined the Dublin Guinness brewery as responsible of the quality control. In 1906 

he had to solve the task of finding the optimal strategy for checking the degree of 

invariance of beer composition along the production process. Keeping the beer 

composition inside a relatively strict interval was essential for the maintenance of a 

good and recognizable taste for Guinness production, the check had to be based on the 

selection of k  bottles for each lot and their chemical analysis. The statistical problem 

can be formulated as the choice of an acceptance threshold neither too strict so not to 

stop the production too often so causing relevant problems to the production line (with 

consequent money losses) nor too relaxed so not to put on the market a low quality 

product with bad consequences for Guinness brand (and again with relevant money 

losses). 

 

This is a classical operational research problem in which there is a trade-off between 

two competing optimization tasks and the best solution consists in finding a global 

minimum (maximum) of a parameter influenced in opposite directions by the two tasks. 

Gosset solved the problem by empirically building a control chart in which he registered 

how many times a given observed malt concentration in the k  bottles sample went 

together with a real fault somewhere along beer production line that asked for a 

corrective intervention (real positive cases) and how many times the same value was 

correspondent to a false alarm (false positive cases). In the first case stopping the 

production and checking for the presence of a fault along the process was the right 

choice, in the second case the correct (most convenient) choice was to let things go as 

usual. Do not stop the production when in presence of a real positive result is what we 

call ‘Error of the I type’, stopping the production when unnecessary is the ‘Error of the 

II type’, the two errors are clearly strictly related and correspond to the two competing 

tasks. Gosset discovered that the best compromise between these two different error 

http://en.wikipedia.org/wiki/Genetic_test
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sources (weighted for their respective financial relevance) was to set a threshold 

of 0.05p  , i.e. to accept to be wrong (in the I type way) in the 5% of cases, thus taking 

as threshold limit for stopping the production a displacement from the optimal malt 

concentration that (in the previous experimentation) was discovered to correspond to a 

false positive in the 5% of cases. This very elegant result (Gossett used the Student’s 

pseudonym in the publication so to avoid problems with Guinness brewery for 

disseminating industrial secrets) was taken as such by experimental science that 

denominated 0H  (null hypothesis) the absence of a relevant effect (the production has 

no problem, in beer terms) and consequently the observed experimental result is due to 

chance, and 1H  (alternative hypothesis) the presence of a real cause at the basis of 

observed results (the production line presents a specific malfunctioning, in beer terms) 

respectively. Consequently the scoring of a 0.05p   was considered (more or less a-

critically) as the signature of a ‘statistically significant’ result and thus as the reach of an 

acceptable factual basis for a given scientific model of explanation [8]. This line of 

thought was adapted to other statistical tests and procedures (Analysis of Variance, 

Regression models, Non-parametric tests..) remaining substantially invariant in its basic 

philosophy, so we must not to be surprised by the presence of paradoxical effects 

deriving from the application of the Student result very far from its place of birth. In the 

case of microarrays the paradox comes from the fact that, at odds with the original 

Gosset’s formulation, we are not checking for the statistical significance of only one (or 

very few) variables but of thousands of them. To accept a type I error (or False 

Discovery Rate, FDR in the microarray jargon) the 5% of times is very reasonable as 

for the between groups difference for the amount of transcription of a single gene, but 

let’s imagine to repeat this operation 20000 times (the number of genes normally 

present in a microarray chips), it is immediate to understand how the 20000 times 

repetition of an operation that each time has a 5% probability of error implies a huge 

number of false positives (high FDR), with around 1000 genes expected to be 

‘significant’ for the pure effect of chance [1]. In microarray experiments we are very far 

outside the realm of a rational use of the elegant Gosset’s solution, and we need to 

seriously face the problem of test multiplicity. In microarray literature there are many 

proposals for facing the test multiplicity problem, these efforts coarsely pertain to two 

main lines of thought we can define as the ‘pessimistic’ and the ‘optimistic’ ways. In 

the pessimistic approach high dimensionality is considered as a curse to be bravely 

faced by limiting the connected risks of false positives by a smart use of statistical tools. 

In the optimistic way, on the contrary, high dimensionality is considered as a blessing 

for the possibility offered to turn upside-down the usual approach of molecular genetics 

and thus strating to explore an organizational analysis more general (and much more 

promising in terms of realism) than the single genes [2,3].  

 

2. The Pessimistic Way (The Curse of Dimensionality) 

 

The most conservative reaction to the challenge high dimensionality poses to the 

common way of reasoning in biomedical sciences (look for the single genes affected 

and build an explanation on them) is to concentrate only on a small sub-set of the 

information present in the microarrays. This can be done by adopting a ‘hypothesis 

driven’ approach (low dimensional arrays made of only few genes selected on the basis 

of a given mechanism of action) or by looking for a statistically sound strategy for 
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setting to a minimum the FDR. The first approach needs no comment: it is coincident 

with the simple coming back to the ‘old mode’ , this is a completely acceptable choice 

but it is not pertinent here. Historically, the first’ pessimistic’ way to face the curse of 

dimensionality was to skip any concern about inferential statistics and using the simple 

Fold Change (FC) as mark of a relevant result: the genes relevant for the phenomenon 

under study are those that present at least a doubling with respect to their baseline 

activity ( 2FC  ) or a triplicate (FC = 2) or a ten-fold increase ( 10FC  ). This shortcut 

in the beginning seemed very effective even for its extreme simplicity, but soon 

appeared that the genes that were ‘significant’ in an experiment were completely 

different from the genes significant in a replica. In other words the scientists recognized 

they made the very bad affair of exchanging a well known error probability (classical 

statistics) for an unknown one [1]. 

 

The next move of this frontal attack to high dimensionality, was the application of 

‘Bonferroni-like’ strategies following a classical method to deal with multiple tests 

developed in the thirties by the Italian statistician Carlo Emilio Bonferroni (1892-1960) 

in the realm of insurances. According to Bonferroni, the significance level used as 

threshold in a test must be divided by the number of independent tests we perform on 

the same data set. Consequently, if we measure the activity of 10 genes, the ‘corrected 

p ’ to replace the usual 0.05 threshold, should be  Bonferroni 0.05 10 0.005p   , 

while for 100 genes the threshold becomes  Bonferroni 0.05 100 0.0005p    and so 

forth. 

 

While this procedure clearly limits the number of false positives, it is very depressing 

for biologists because only very few outlier activities survive the correction, so 

eliminating a lot of potentially relevant information. Moreover, at the basis of the 

Bonferroni strategy is the assumption each gene ‘plays its game’ independently from 

the others, that is clearly absurd in biology. The lesson emerging from these first efforts, 

is the need to consider statistics no more as a standardized recipe to be applied to the 

data, in the most rigorous as possible way, but a as a way to sketch a quantitative picture 

of the studied system. This implies the choice of a statistical tool cannot be considered 

as neutral but, to be effective, must reflect some relevant intrinsic features of the 

biological system at hand. 

 

From this point onward, the response to the dimensionality challenge followed a less 

‘automatic’ path and tried to pass around the obstacle instead of facing it directly or, 

worse, completely refusing its existence. Still in the realm of the pessimistic way are 

located the so called GCT (gene-class testing) strategies. The philosophy of a GCT 

strategy is the explicit use of a priori knowledge about the presence of functional 

classes made of genes having a similar physiological role. In GCT, the first step of 

collection of all the genes ‘significantly’ related to the particular discrimination task into 

a list is followed by the analysis of such a list in terms of ‘differential enrichment’ of 

genes pertaining to certain functional classes with respect to the whole genome list. 

Thus if the ‘significant genes’ display a much higher relative frequency of ‘genes 

involved in immune response’ with respect to the whole genome, independently of the 

reliability of the observed significance of a given gene, we can safely affirm that the 

studied phenomenon involves ‘the immune response’ as such. The statistical 
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significance of the functional distribution of the genes in the list with respect to a 

chance assortment is a much better defined statistical problem with respect to the 

statistical significance of each single gene as for the discrimination task, and can be 

solved by a straightforward chi-square like approach. Gene functional classes are based 

on the so called GO (Gene Ontologies): complex hierarchical classification of genes 

going from very general (immunity, metabolism, DNA repair, membrane structure..) to 

very detailed functional definitions (Natural Killer activity, pro-apoptotic, MAP Kinase 

pathway..). At this point the subject of the analysis is no more the single gene but the 

entire list that is checked for the tenability of its characterization as a specific non-

random choice of functions. The GST approach has a much more realistic attitude in 

biological terms (genes are considered as proxyes of global functions and not per se) but 

nevertheless remains very unpractical and affected by many ambiguities for the 

polysemic character of biomedical information: as a matter of fact the same gene can be 

allocated in many different classes of biological activity. Moreover we could think of 

completely independent classifications based, let’s say on cellular location of the 

correspondent protein or its sequence homology with other products. 

 

Thus the generic question ‘gene X is more similar to gene Y or gene Z?’ does not allow 

for any context independent answer, being strictly dependent on the organization level 

we are considering or the features we think are more important for the particular case. 

Thus, while looking for a ‘biological meaning’ in addition to the brute a posteriori 

statistical significance, so giving rise to a kind of Bayesian approach, while in principle 

is surely correct can be very difficult to attain and open to a lot of alternative 

interpretations. The Bayesian character of statistics application to biology is a very 

important point to discuss: in the case of GST a given a posteriori statistical result (in 

the form of a list of genes significantly different for the discrimination task) is accepted 

as ‘biologically meaningful’ if (and only if) it can be interpreted in the light of accepted 

biological theory. That is to say our results (a posteriori knowledge) are asked to ‘make 

sense’ in terms of a specific and recognizable suite of already known biological 

functional modules (a priori knowledge). 

 

The work of Rev. Thomas Bayes (1702-1761) is still more evident in the so called 

network-based analysis of microarray data that acquired a great popularity following the 

development of Systems Biology studies [4]. 

 

Figure1 reports the accepted regulation frame for apoptosis, the so called programmed 

cell death. 

 

In this website are collected thousands of such regulation pathways described by means 

of the box-and-arrow formalism, each box represents a cellular constituent (gene, 

protein, organic metabolite), each arrow a regulation link (is increased/decreased by, 

binds to, is modulated by, interacts with…) between two nodes of the network.  

 

The network formalization in which each regulation module is presented as an 

integrated system of mutual regulation among the elementary constituents is very 

common in biology given it allows for a convenient and vivid display of very 

intermingled pathways. What is new of systems biology approaches is the effort of 

deriving quantitative general consequences from the wiring structure of such networks 
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by both the application of topological graph theory derived descriptors and novel 

application of some intriguing qualitative dynamics results coming from systems 

analysis and automatic control fields. 

  

 
 

Figure 1. The reported cartoon comes from KEGG (Kyoto Encyclopedia of Genes and 

Genomes) freely available at the website: http://www.genome.ad.jp/kegg/. 
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