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Quantum physics is mainly concerned with the microscopic world, but all of physics is 
quantum physics. This means that the laws of classical physics follow from the laws of 
quantum physics. The particle nature of light was established through study of 
photoelectric effects, spectra of blackbody radiations, and many other phenomena. 
Thus, the light has the dual nature of being wave and particle. Likewise, it was 
established through experiments such as diffraction phenomenon that the electron as 
well as other particles has the wavelike property. As the results, all material particles 
and fields have the dual nature. The wave and particle properties are related by de 
Broglie relations: E h= ν  and p = h/λ, where E and p are the energy and momentum of 
the particle and ν  and λ are the frequency and wavelength of the wave. 
 
The universal constant h called the Planck constant is a key to relate the particle nature 
to the wave nature. The value of h is exceedingly small in the macroscopic scales: h ~ 
6.6×10−34joule⋅sec. As the result, the quantum effect is only important for microscopic 
phenomena under usual circumstances. 
 
The only way to reconcile the particle nature and the wave nature to each other is to 
identify the wave as a wave which expresses the probability distribution for finding the 
particle at various positions in space. The wave is called the wave function usually 
denoted by Ψ , which is a function of space and time. The fundamental equation to 
describe its time evolution is the Schrödinger equation and the interpretation of Ψ  is 
that the absolute square of Ψ  gives the probability for finding the particle at the 
spacetime point. 
 
The characteristic features of quantum systems are the uncertainty and discreteness of 
physical quantities contrary to classical systems. The uncertainty nature originates from 
the probabilistic nature of the wave function and a pair of physical quantities such as 
position and momentum cannot take definite values at the same time. The discrete 
nature is also an outcome of the wave nature of quantum system. In particular, the 
energy of the electron in an atom can take only one of the discrete values allowed, and 
thus the state of the electron can change discontinuously thereby emitting light with 
definite energy. 
 
Particles of the same kind are perfectly identical and indistinguishable with each other. 
In quantum physics, this leads to the wave function of a multi-particle system being 
either symmetric or antisymmetric under exchange of any pair of identical particles. It is 
antisymmetric for electrons, and this leads to Pauli's exclusion principle which states 
that no two electrons can occupy the same state. 
 
The structures of atoms, molecules, and solids are well understood based upon the 
discrete nature of allowed energies for electrons and the exclusion principle for 
electrons. Electric conductivity of solids is a good example to show how quantum 
physics can well explain the characteristic properties of solids. 
 
The electromagnetic interaction between charged particles and the electromagnetic field 
is derived from the gauge invariance of the interaction and the minimal coupling based 
on the invariance leads to the correct interaction. Quantum mechanical calculation of the 
radiative transition of atoms is presented and the results fit well with the observation. 
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Quantum mechanics is a self-contained fundamental theory of the microscopic world 
and able to describe even quantitatively all kinds of microscopic phenomena. 
 
Under extreme condition such as very low temperature, quantum effect can appear in 
macroscopic scales. Superconductivity and superfluidity are remarkable quantum 
phenomena of macroscopic scales. 

Introduction 

Quanta and relativity are the two phenomena of physics which are quite outside our 
daily experiences. We shall look into the origins of the concept of quanta and the laws 
of quantum physics in this chapter. It is really remarkable that physicist's view of nature 
changed totally and new perspectives were opened up within about 25 years in the early 
20th century. 
 
One of the great intellectual upheavals of the 20th century physics came out of the 
gradual realization that classical physics, i.e. the Newtonian mechanics and Maxwell's 
theory of electromagnetism, was not appropriate in the domain of the atomistic physical 
world. Classical physics had worked so well on the large scale but failed on the small 
scale of the atomic dimension. Physics in the realm of atoms, nuclei, and elementary 
particles can be well described only in terms of the quantum nature of matter and 
radiation, and these aspects of nature referred to as quantum phenomena. The basic 
theory of quantum phenomena is known as quantum mechanics. 
 
Although quantum physics is mainly concerned with the microscopic world, all of 
physics is quantum physics. If we know the basic laws governing the microscopic 
world, at least in principle we can predict the behavior of macroscopic systems 
composed of a huge number of atoms. This means that the laws of classical physics 
follow from the laws of quantum physics. Therefore, the laws of quantum physics are 
the most general and basic laws of nature. 
 
First we shall describe the quantum nature of the electromagnetic wave. The 
photoelectric effect and the blackbody radiation offered us the first evidence for the 
quantum nature of light (see Particles and Fields). The photoelectric effect is the 
phenomenon in which electrons are emitted from a metal surface when the metal is 
irradiated by a beam of light. The energy spectrum of the electrons emitted depends on 
the wavelength but not on the intensity of light. Furthermore, electrons are emitted only 
when the wavelength of light is less than a certain critical value, which depends on the 
material used. In Fig.1 we show the current due to the emitted electrons as a function of 
the wavelength λ of light. 
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Figure 1. Photoelectric current as a function of wavelength of light 
 

The above characteristics of the photoelectric effect can be understood only if the 
process is absorption of one quantum of light, a photon, by an electron in a metal. Then, 
the energy balance of the photoelectric effect is given by 
 

max 0h K h= +ν ν  (1)  
 
where v is the frequency of light ( ν  = c/λ), hν the energy of the photon, Kmax the 
maximum energy of the emitted electrons, and hv0 the minimum energy needed for an 
electron to get out from the metal surface. From  Eq.(1), photoelectrons can be emitted 
only when 0ν > ν , thus confirming the experimental results shown in Fig.1. 
Photoelectric effects show that a beam of light consists of a stream of photons traveling 
along the beam with the speed of light and that each photon carries an energy hν , where 
h is the Planck constant. 
The photon concept was also supported by an experiment first carried out by Compton 
in 1923. He studied the behavior of X-rays scattered from a target material made of 
graphite. The wavelengths of the scattered X-rays varied with scattering angles. 
Compton realized that the scattering is an elastic collision of a photon with an electron 
in the material. In Fig.2 we show the kinematics of the Compton scattering, where λ and 
λ′ are the wavelengths of the incident and scattered lights, ϕ  is the scattering angle and 
θ the recoil angle of the electron. 
 

 
 

Figure 2. Kinematics of the Compton scattering 
 

If a photon with wavelength λ carries a momentum p = h/λ and an energy E = hv = ch/λ, 
the momentum and energy conservations of the Compton scattering are 
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The first two equations are the momentum conservation laws and the last one is the 
energy conservation law, where m is the rest mass of the electron. We have chosen the 
x-axis as one along the direction of motion of the incident photon and the y-axis as one 
perpendicular to the x-axis and in the scattering plane. 
 
From these equations we can find, after neglecting v2/c2 in comparison with unity, 
 

( ) (1 cos )h mcλ λ′ = + − ϕ  (3)  
 
The scattered light has a longer wavelength (λ > λ′) than the incident light except at ϕ  
= 0. This equation fits nicely the observed relation between the wavelength λ′ and the 
scattering angle ϕ  of the photon, thus confirming the particle nature of light. The 
quantity h/mc is called the Compton wavelength of the electron, which is 2.426×10−12m. 
 
The dual nature of light being wave and particle was well established through many 
experiments such as photoelectric effects, blackbody radiations and Compton 
scatterings. The particle and wave properties of light are related by 
 

,E h p h λ= =ν  (4)  
where cλ =ν . 
 
The value of the Planck constant h is 
 

27 346.626 10 erg×sec 6.626 10 joule×sech − −= × = ×  (5)  
 
The Planck constant characterizing the quantum nature of radiation and matter is 
numerically extremely small when measured in units which are appropriate for 
description of macroscopic phenomena. The physical dimension of h is 
 
[ ] [time]×[energy]=[length]×[momentum]
=[angular momentum]
h =

 (6)  

 
A physical quantity of this dimension is known as action, and accordingly the Planck 
constant is called the quantum of action. 
 
In the theory of relativity, the energy E and momentum p of a body are related by E2 = 
c2p2 + m2c4, where m is the rest mass of the body. The relation E = cp which we can 
obtain from  Eq.(4) expresses that the photon is a massless particle (m = 0). The 
experimental results of the Compton scatterings clearly show that a beam of light 
consists of a stream of massless photons traveling with the speed of light. 
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In order to further elucidate the relation between the wave and quantum natures of light, 
we shall consider the double-slit experiment of Young (see Development of 
Fundamentals in Physics). The essential geometry of the double-slits experiment is 
shown in Fig.3. 

 
 

Figure 3. The double slit-experiment 
 

A monochromatic light from a single source passes first through a thin slit and next 
through two very narrow parallel slits separated by a short distance, and finally 
impinges upon a screen. Then we find interference fringes on the screen as shown in the 
figure. This interference pattern can be well understood in terms of the wave nature of 
light. In Fig.4 we show how the waves with a definite wavelength propagate from each 
of the double-slits towards the screen and interfere with each other, when we look at the 
waves in a horizontal plane. 
 
The quantum nature of the light appears when we use an extremely weak light in 
intensity. A very weak light beam would be a train of photons separated by a large 
distance from each other. When the beam hits the screen, only a single spot on the 
screen is illuminated at a time, which shows clearly that photons behave as localized 
objects or particles. When we keep observing bright spots on the screen, the positions of 
the spots change from one place to another more or less randomly. If we keep 
registering bright spots on the screen during a certain time interval, there gradually 
appears an interference pattern with increasing number of spots as shown in Fig.5. For 
large enough number of spots, the pattern becomes identical with the interference 
fringes observed on the screen when we used an intense light beam. 
 

 
 

Figure 4. Interference of two waves in the double-slit experiment 
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Figure 5. Interference pattern of the double-slit experiment with very weak light 
 
Since photons in a weak light beam are separated by a large distance from each other, 
they should behave independently with no correlation between them. Yet, they behave 
statistically to form the typical interference pattern as a whole. A plausible reason for 
the formation of the pattern is that the pattern is the property of the wave of a single 
photon and that the wave represents probability distribution of the position of the 
photon. This probability wave is called a wavefunction of the photon. 
 
A photon has a finite probability to pass through either one of the two slits and the two 
probability waves passed through the two slits interfere to each other. Bright lines on 
the screen are lines connecting positions where photons hit with large likelihood and 
dark lines are those where photons hit with small likelihood. Each photon can hit only 
one spot on the screen. But, if many photons with the same wave function impinge upon 
the screen, statistically they hit the screen according to the probability distribution 
specified by the interference pattern. This is similar to throwing a dice repeatedly. In 
each trial, we will get a definite number out of 1 to 6. If we repeat throwing the dice 
many times, each of the numbers from 1 to 6 will be obtained with an equal probability 
of 1/6. Namely, the result of each trial is not deterministic, but the averaged results over 
many trials are well predicted through the predetermined probability distribution. 
 
The results of the double-slits experiments with a weak light beam clearly show that the 
wave of light is a wave of the probability distribution of a single photon in space and 
time. Therefore, contrary to classical physics, motion of photons is not deterministic but 
probabilistic in nature. The electromagnetic wave has a dual nature. It has a wavelike 
property which causes it to show interference and diffraction patterns, and a particle like 
property as shown by the quantum nature of photons. Then it might be natural to ask 
whether particles such as electrons might also have wave properties similar to the light. 
 
The photon has a momentum p and an energy E given by p = h/λ and E = hv, where λ is 
the wavelength and v is the frequency of the photon. By analogy, De Broglie speculated 
in 1924 that particles might have wave properties and that their wavelengths and 
frequencies and their momenta and energies are related by the following relations: 
 

,E h p h λ= =ν  (7)  
 
The waves associated with matter are called the de Broglie waves.  
 
In 1927, Davisson and Germer confirmed that electrons indeed have wave properties. In 
their experiments a beam of electrons with a given energy and a given momentum was 
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scattered by a nickel crystal upon which the beam was incident. They found that the 
electrons were reflected very strongly at certain special angles, which is similar to the 
Bragg reflection of X-rays from crystals. 
 
Suppose a beam of electrons with a fixed energy is directed perpendicularly at a target 
crystal which consists of periodic arrays of identical atoms. To illustrate the principle, 
we consider a one-dimensional array of identical atoms as shown in Fig.6. The same 
principle applies to a two or three-dimensional array of identical atoms. 
 

 
 

Figure 6. The Wave property of electrons 
 

The incident electron wave is reflected by each atom in the row. In certain directions the 
reflected waves from all the atoms will reinforce each other, while in other directions 
they will tend to cancel. The condition for constructive interference is that the 
differences in the distances from different atoms to the point of observation are integral 
multiples of the wavelength. If the point of observation is very far away from the target 
crystal, the condition for constructive interference is 
 

sind nθ λ=  (8)  
 
where n is an integer, d the lattice spacing and θ the diffraction angle. The observed 
diffraction maxima occurred at angles expected from  Eq.(8). 
 
Similar experiments for other particles such as protons, neutrons, and atoms were 
carried out later and revealed that they all share the same wave property with electrons. 
Therefore, we can safely conclude that all matter has the dual property of being waves 
and particles. The wave nature of a macroscopic body is not apparent in ordinary 
circumstances, because its wavelength λ(= h/p = h/mv) is too small for any interference 
effect to be observed. Thus, macroscopic bodies can be safely treated as particles totally 
disregarding their wave properties. 
 
Structure of Atoms 
 
The study of the structure of the hydrogen atom as well as those of other atoms played 
indispensable roles in establishing the quantum nature of microscopic objects and the 
laws of quantum physics. Through Rutherford's experiments it was found that an atom 
consists of electrons orbiting about a nucleus. But according to classical electromagnetic 
theory, an accelerating charged particle must emit radiant energy and thus a circulating 
electron must continuously radiate and lose energy. This means that atomic electrons are 
unstable and soon or later fall into the nucleus by losing its energy. Thus, the atoms in 
the universe should have collapsed long time ago. In 1913 Bohr proposed a 
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revolutionary model of the atomic structure in which he gave a prescription to solve the 
stability problem of atomic orbits of electrons in an atom. 
 
The hydrogen atom consists of a proton and an electron. When the electron orbits the 
massive proton in a circular orbit of radius r, the balance between the centrifugal and 
electrostatic coulomb forces is given by 
 

2 2 2mv r e r=  (9)  
 
where v is the velocity of the electron along the circular orbit. 
 
Bohr's first postulate is that only those atomic orbits occur for which the angular 
momentum of the orbiting electron is an integral multiple of h/2π. Mathematically this 
postulate is 
 

( )2 ( 1, 2, 3, )mvr n h nπ= = …  (10)  
 
Bohr's second postulate is that no electron radiates energy as long as it remains in one of 
the orbital energy states specified by the first postulate and that radiation occurs only 
when an electron goes from a higher energy state to a lower one, the energy of the 
quantum of radiation being equal to the energy difference of the states. 
 
The Bohr model based on the two postulates explained rather well the atomic spectra of 
hydrogen. We shall here describe the Bohr model in a somewhat different way from his 
original one, thereby employing explicitly the wave nature of the electron due to de 
Broglie. From  Eq.(9) the momentum of the electron moving along an atomic orbit is 
given by 
 

( )1 22p mv e m r= =  (11)  

 
The hydrogen atom has a radius of about 10−10m. Using this value for r, we can estimate 
the de Broglie wavelength of the electron and it is given by 
 

( ) ( )1 2 10~ 4 10 mh p h e r mλ −= = ×  
 
Since the wavelength is comparable to the radius of the atom, the wave nature of the 
electron must be taken into account in describing atomic orbits of the electron. If an 
electron wave circles along its orbit as shown in Fig.7, the wave can only be stable 
when the orbit length is an integral multiple of wavelength. Otherwise, the wave will be 
diminished to zero through interferences of waves repeatedly circulating about the 
nucleus. 
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Figure 7. Waveoperty of an electron in an electronic orbit 
 
This condition is given by 
 

2 ( 1,2, 3, ) ,n nn r nλ π= = …  (12)  
 
where n is any positive integer, rn the radius of the orbit, and λn the wavelength of the 
electron in the orbit. This condition is identical with  Eq.(10) because of the relation λ = 
h/p = h/mv for the de Broglie wave. Thus, the wave nature of an electron gives a basis 
for Bohr's first postulate and leads to the discreteness of atomic orbits allowed for the 
electron. These orbits are called Bohr orbits. 
 
The radius of the smallest orbit r1 is called the Bohr radius rB, which in view of  Eqs.(9) 
and (12) is given by 
 

2 2 100.53 10 mBr e m= = ×=  (13)  
 
and the radii of other orbits are given by rn = n2rB. Here, = is defined by = = h/2π. 
 
The energy of the atom consists of the kinetic and potential energies of the electron. The 
energy of the electron in the n-th orbit is 2 22n n nE mv e r= − , where vn is the velocity of 
the electron in the n-th orbit. Using  Eqs.(10) and (11), we obtain 
 

( ) ( ) ( )22 2 2 21 2 13.6 eVnE n mc e c n= − = −=  (14)  

 
By the definition of energy, the zero point of energy is taken for r = ∞ and v = 0. As the 
electron comes closer to the proton, it looses energy by emitting radiations and falls into 
a stationary state of the hydrogen atom, whose energy is negative. The lowest energy 
state (n = 1) is the ground state and other states of higher energies are excited states of 
the hydrogen atom. 
 
In Fig.8 we show the energy level diagram for a hydrogen atom. There exist an infinite 
number of discrete levels between the n = 1 ground state and the state of n = ∞. At the 
level where n = ∞, the electron is free from the atom but it is at rest (v = 0). States of 
positive energies represent states of a free electron and their energies are the kinetic 
energy of the free electron, which can take any value from zero to plus infinity. 
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In 1926, Schrödinger incorporated de Broglie's postulate on the wave nature of a 
particle into a mathematical formulation from which all wave aspects of the particle can 
be derived. The Schrödinger equation is an equation of motion of de Broglie waves. The 
solution of the equation is a function of space and time denoted as Ψ  and referred to as 
the wave function. 
 
The correct meaning of the wave function Ψ  was proposed in 1926 by Born which is 
now become known as the orthodox interpretation ofΨ . Born proposed that the electron 
is truly a particle and that the Ψ  wave associated with it is a probability function that 
would tell us where the electron is most likely to be. If we calculate the likelihood of 
finding an electron somewhere in a hydrogen atom by using the wave functionΨ , we 
get whole range of potential locations of the electron in the atom. Thus the electron is 
associated with a cloud of possibilities and the densest part of the cloud is the most 
likely place to find the electron. 
 

 
 

Figure 8. The energy level diagram for a hydrogen atom 
 

It turned out that the Schrödinger equation for hydrogen has solutions only for specific 
values of energy which are exactly equal to those of the Bohr orbits. According to 
Born's interpretation of the wave function, the atomic electron is not really whirling 
about the nucleus like the motion of the planets about the sun, but instead it was 
smeared out in space as predicted by the wave function. The Schrödinger equation for 
the electron in a hydrogen atom is 
 

( )2 22m V i t− ∇ + = ∂ ∂= =Ψ Ψ Ψ  (15)  

where = = h/2π and V is the coulomb potential between the electron and the proton: 
 

2V e r= −  (16)  
 
The Schrödinger equation cannot be derived from previous classical ideas. It is a 
postulate which can be only justified by its ability to predict various physical 
phenomena and by comparison of the predicted results with the results of experiments. 
We find from  Eq.(15) that the wave function Ψ  is a complex quantity contrary to 
waves in classical physics. Even if Ψ  is everywhere real at an instantaneous time, it 
will develop its imaginary part because of the presence of the factor i in the right-hand 
side of the Schrödinger equation. Also the Planck constant appears in the equation 
meaning that the quantum nature of the wave is taken into account. 
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According to Born's interpretation of the wave function, the probability for finding a 
particle in an infinitesimal volume element dV at a position r is given by 
 

( , ) ( , )t t dV∗ r rΨ Ψ  (17)  
 
Since Ψ * Ψ  is real and positive, there is no problem in interpreting this quantity as the 
probability. Since the particle must be somewhere in the entire space, the integral of the 
probability over the entire space must be one: 
 

( , ) ( , ) 1t t dV∗ =∫ r rΨ Ψ  (18)  
 
Measured values of any physical quantity A which is a function of the position and 
momentum of a particle follow a statistical distribution specified by the wave function 
just like the position of the particle. And its average value over many measurements is 
given by 
 

( , ) ( , ) ( , )A t A t dV∗< > = ∫ r r p rΨ Ψ  (19)  
 
The probabilistic or statistical interpretation of the wave function Ψ  suggests that we 
can compute only the likelihood of events. In 1927, Heisenberg proposed the 
uncertainty principle which gives reason to the indeterminacy of physical quantities. It 
states that in a simultaneous measurement the uncertainty Δx in the position multiplied 
by the uncertainty Δp in momentum is at best about equal to the Planck constant h: 
 

(for one - dimensional space)x p hΔ Δ ≥  
 
(A rigorous uncertainty relation will be given later after defining Δx and Δp.) 
 
Suppose we try to measure the position and momentum of a moving body. If the body is 
of a macroscopic size, we can, for example, use sunlight bouncing off the body to find 
out its position and momentum (velocity). Similarly, suppose we use a beam of photons 
to observe the position and momentum of a microscopic object such as an electron. A 
photon with a given momentum will have a corresponding wavelength λ. A photon 
wave will bend around an electron yielding only a coarse determination of the electron 
position. Its precision Δx is of the order of the photon wavelength λ(Δx ~ λ). When a 
photon interacts with an electron, it will disturb the motion of the electron. The 
momentum change of the electron during the interaction is equal to the momentum of 
the photon either emitted or absorbed by the electron. This imposes the limit to the 
precision in the momentum measurement of the electron; Δp ~(photon momentum)~ h/λ. 
Then, the product ΔxΔp is about equal to the Planck constant h. 
 
The way to sharpen the position measurement of the electron is to use the small photon 
wavelength comparable or less than the size of the electron. But, then the motion of the 
electron will be strongly disturbed by the large photon momentum and the uncertainty 
in the momentum measurement will increase. Conversely, the way to sharpen the 
momentum measurement is to use the large photon wavelength so that the momentum 
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uncertainty becomes small. However, the position uncertainty will increase in 
proportion to the wavelength used. Heisenberg's uncertainty relation does not exclude 
the possibility of measuring either the position or the momentum of a particle with an 
infinite precision, but it excludes the possibility for measuring both the position and 
momentum with an infinite accuracy at the same time. 
 
Planck's constant h is an extremely small number (~ 6.6 × 1.0−34joule⋅sec). For an 
ordinary macroscopic body with mass m, ΔxΔv ~ h/m , so that the product of the 
uncertainties in the position and velocity of the body is negligibly small because of the 
small h/m. The uncertainties become important only for objects with an extremely small 
mass such as an electron or an atom. 
 
For example, the product of ΔxΔv due to the uncertainty relation for a body with mass 
of 1kg is ΔxΔv ~ 6.6×10−34m2/s. If we take, for example, Δx ~ 10−17m, we obtain Δv ~ 
6.6×10−17m/s. These values are very much smaller than the magnitudes of experimental 
errors in measurements of the position and velocity of any macroscopic body. On the 
contrary, ΔxΔv for an electron with mass 9.1×10−31kg is about 0.7×10−3m2/s. If we take 
Δx ~ 10−10m which is of an order of the atomic radii, we obtain Δv ~ 0.7×107m/s which 
is quite a large uncertainty in the electron velocity. 
 
Although the Schrödinger equation cannot be derived from any of classical equations, it 
must represent classical motion of a particle under conditions where the wave nature of 
the particle can be neglected. The Schrödinger equation for the electron in a hydrogen 
atom is given by  Eq.(15) supplemented by  Eq.(16). If we multiply Ψ * upon the 
equation (15) from the left and integrate over the entire space, we have 
 

2( , ) ( / 2 ) ( , ) ( , ) ( ) ( , )

( , ) ( , )

t m t d t V t d

t E t d

∗ ∗

∗

+

=

∫ ∫
∫

r p r r r r r r

r r r

Ψ Ψ Ψ Ψ

Ψ Ψ
 (20)  

 
Here we substituted E for i=∂/∂t and p for −i=∇. 
This relation means that the sum of the average values of kinetic and potential energies 
is equal to the average value of the total energy E of the electron in the hydrogen atom, 
which corresponds to the relation E = p2/2m + V in classical physics. Thus the 
Schrödinger equation can be interpreted as the relation E = p2/2m + V applied to the 
wave functionΨ , where E and p are the differential operators acting upon Ψ . When 
the probability distribution specified by Ψ  is such that the deviations of the position 
and momentum from their average values are small in macroscopic scales, then the 
Schrödinger equation can describe well the classical motion of the electron. 
 
In order to see why we substituted E by i=∂t and p by −i=∇, let us consider the 
Schrödinger equation for a free particle moving in one dimensional space: 
 

( )2 2 22m d dx i t− = ∂ ∂= =Ψ Ψ  (21)  
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A solution of the equation with a definite wavelength λ and a definite frequency ν  can 
be written as 
 

( )( , ) exp 2x t A i x tπ λ= −⎡ ⎤⎣ ⎦νΨ  (22)  
 
where A is the normalization constant of the wave function. Since we allow wave 
functions to be complex, we took the wave function of an exponential form. Since 
Ψ * Ψ  is constant everywhere, the wave function Ψ  represents a state of uniform 
density of the electron in space. 
 
Operating i=∂t and −i=∇ on Ψ  are equal to multiplying 2π=ν  (= hν  = E) and 2π=/λ (= 
h/λ = p) on Ψ  respectively, if we use the de Broglie relations between the wave nature 
and the particle nature of the electron. Thus, the substitutions i=∂t for E and −i=∇ for p 
are justified. 
 
Any wave function which satisfies the equation i=∂Ψ /∂t = E Ψ  with a constant E 
represents a stationary state with the given energy E. The time-dependence of a 
stationary state Ψ is given by ( ) ( )= exp -Et r=Ψ Φ  where Φ(r) depends only upon the 
spatial coordinates of the particle. The Schrödinger equation for the time-independent 
wave function Φ is given by 
 

( )2 22m V E− ∇ + == Φ Φ Φ  (23)  

 
which is called the time-independent Schrödinger equation. 
 
The Schrödinger equation (15) is linear in Ψ . If Ψ  is a solution of the equation, any 
multiple of Ψ  is also a solution. Thus, if we find a solution, we can always multiply it 
by an appropriate constant so that the wave function satisfies the normalization 
condition (18). Furthermore, if we find two or more than two solutions, any linear 
combination of the solutions is also a solution. Thus we can superpose any number of 
solutions to obtain a solution. This is an important property of wave functions of 
quantum systems and called the superposition principle of quantum mechanics. 
 
In classical physics, a particle moving in a potential can take any value of energy from 
the minimum value which corresponds to the particle at rest at the position of the 
potential minimum to plus infinity which corresponds to the particle moving with an 
infinite kinetic energy. On the contrary, values of energy allowed for a quantum system 
are not continuous in general. In particular, when a system is confined in a finite region 
of space, the energy of the system can only take discrete values instead of continuous 
ones. Thus the energy of the quantum system is quantized. 
 
As a simple example to show how the discrete nature of energy appears, we shall 
consider a particle moving in an infinitely high square potential well in one-dimensional 
space. The potential is given by V(x) = 0 for 0 ≤ x ≤ a and V(x) = +∞ for x < 0 and x > a. 
The time-independent Schrödinger equation for the particle moving in this potential is 
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( )2 2 22 (0 )m d dx E x a− = ≤ ≤= Φ Φ  (24)  

 
Since the particle cannot have an infinite amount of potential energy, Φ must vanish in 
the regions where V = + ∞. Thus, Φ is confined in the finite region (0 ≤ x ≤ a) and Φ = 0 
at the boundaries of the potential because of the continuity of the wave function; Φ(0) = 
Φ(a) = 0. The wave function in the region 0 ≤ x ≤ a is given by 
 

{ }1 2( ) sin (2 )x A mE x= =Φ  (25)  

 
where A is the normalization constant. 
 
The wave function Φ was chosen to satisfy the boundary condition Φ(0) = 0. The other 
boundary condition Φ(a) = 0 requires that (2mE)1/2a/= = nπ, where n is a positive 
integer (n = 1,2, …). From this we obtain the values of energy allowed for the particle: 
 

2 2 2 22 ( 1,2, )nE n ma nπ= == …  (26)  
 
The wave functions for lower values of n are shown in Fig.9. 
 
The amount of the discreteness in energy is proportional to 1/a2 and it vanishes for large 
enough values of a. Thus, the discrete nature of energy is due to the finiteness of a, i.e. 
due to the system being confined in a finite region of space. 
 
The lowest energy E1 for this system is not zero but finite. Since the particle cannot be 
at rest at a fixed position due to the uncertainty principle, the non-vanishing lowest 
energy comes from the minimum motion of the particle in accordance with the 
uncertainty principle. This energy is called the energy of the zero point oscillation of the 
particle. 

 
 

Figure 9. The wave functions of a particle moving in an infinitely  high square potential 
 
Likewise, the Schrödinger equation for the electron in a hydrogen atom has a solution 
only for the discrete values of energy given by  Eq.(14). The positive integer n which 
specifies the state of the electron is called the principal quantum number. The 
discreteness of the energy is due to the condition that the wave function should 
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approach zero for large distances from the nucleus, so that the electron is confined in a 
finite region of space. 
 
If the electron can be at rest at the position of the nucleus, the energy would be infinitely 
negative due to the infinite negative coulomb potential energy. Since this is not possible 
due to the uncertainty principle and the electron has to move about the position of the 
nucleus even in its state of minimum motion, the lowest energy E1 of the electron in a 
hydrogen atom is finite instead of minus infinity. 
 
The energy alone is not enough to completely specify the state of motion of an electron 
in an atom. In classical physics not only energy but also angular momentum is 
conserved for an isolated system, and a definite value of angular momentum and its 
direction can be assigned to the state of motion. Furthermore, electrons are spinning 
about their own axes so that the direction of spin can be assigned to each of the 
electrons. 
 
In quantum physics the values of angular momentum of an electron or any particle can 
take only discrete values just like energy. They are integral multiples of the unit angular 
momentum = (= h/2π) (see Development of Fundamentals in Physics). If we denote the 
magnitude of angular momentum by lh/2π, we call l (= 0,1,2, …) the orbital quantum 
number of the electron orbit. 
 
Because of the uncertainty principle, different components of the angular momentum 
cannot take definite values at the same time. Let us denote the angular momentum by L 
which is a vector quantity. If L is fixed in space so that all the components of L have 
definite values, the electron would be confined in a plane perpendicular to the direction 
of L. If L were in the z-direction, the electron has to be in the xy-plane at all times. Then 
the uncertainty in the z-component of the position of the electron is zero, which 
contradicts the uncertainty principle unless the z-component of the electron momentum 
is infinitely uncertain. 
 
Therefore, we can only assign definite values to the magnitude of the angular 
momentum and its one of the components, e.g. Lz, at the same time. Values of the other 
components, Lx and Ly, cannot have definite values (see Development of Fundamentals 
in Physics). Since only one component Lz of L and the magnitude L have definite 
values, the direction of L is constantly changing as shown in Fig.10. Thus the average 
values of Lx and Ly are zero, while Lz always has a definite value which is an integral 
multiple of the unit angular momentum: Lz = m= (m = 0, ±1, ±2, …). The number m is 
called the magnetic quantum number of the electron orbit. 
 
For a given value of the orbital quantum number l, there exist 2l+1 different values of 
the magnetic quantum number m (m = 0, ±1, ±2, …, ±l), because the magnitude of Lz 
cannot exceed the magnitude of the angular momentum L. The different values of m 
correspond to different orientations of the angular momentum vector L. 
 
In addition to the orbital angular momentum, the electron has its spin angular 
momentum. Since only two different spin states were observed for the electron in the 
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Stern-Gerlach experiment (see Particles and Fields ), the spin s of the electron is 1/2 in 
the unit of = because of the relation 2s+1 = 2. The spin state of an electron is specified 

by the value of sz which can take either +1/2 or −1/2 in units of =. The value of sz is 
called the spin quantum number. Spin is similar to orbital angular momentum, but it is 
not quite right to imagine that something is rotating in space inside the electron. The 
real meaning of spin can be only clarified by Dirac's relativistic theory of electrons. 
 

 
 

Figure 10. Motion of an angular momentum vector with a definite magnitude 
 
In order to illustrate how the angular momentum is quantized in units of =, we shall 
consider the motion of a particle in a two-dimensional plane. In classical physics the 
orbital angular momentum L of a particle moving about the origin of the coordinates is 
given by L = r × p. The orbital angular momentum in quantum physics is obtained by 
substituting p by −i=∇: 
 

( )i i= × − ∇ = − ×∇L r r= =  (27)  
 
If a particle moves in a plane as shown in Fig.11, the angular momentum L is given by 
 

( )y xL i x y i θ= − ∂ − ∂ = − ∂= =  (28)  
 
where the plane of motion is taken to be the xy-plane and θ is the polar angle shown in 
the figure. 
 

 
 

Figure 11. The angular momentum of a particle moving in the x-y-plane 
 

The wave function Φ for the stationary rotational motion of a particle satisfies the 
following equation: 
 
L i mθ= − ∂ ∂ == =Φ Φ Φ  (29)  
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Here m= is the value of the angular momentum of the stationary motion. 
 
Solutions of  Eq.(29) are of an exponential form in θ and given by 
 

1 2(2 ) exp( )i mπ θ−=Φ  (30)  
  
Here the normalization constant was chosen to satisfy ∫ Φ*Φdθ = 1, where the 
integration over θ is from 0 to 2π. 
 
Since the range of the variable θ is 0 ≤ θ ≤ 2π and the two angles θ = 0 and θ = 2π 
represent the same angle, the periodic condition Φ(0) = Φ(2π) must be satisfied. From 
this we obtain m = integer. Thus, L can take only discrete values given by m=, where m 
is an integer (0, ±1, ±2, …). It is clear that the discreteness in values of L came from the 
space of motion being finite (0 ≤ θ ≤ 2π) just like the discreteness in energy came from 
the finite extension of the wave function in space. 
 
A stationary state of a quantum system with a definite energy is characterized by a set of 
quantum numbers. Such a state is called a quantum state. In case of a hydrogen atom, 
the quantum numbers are the principal quantum number n, the orbital quantum number l 
denoting the magnitude of angular momentum, the magnetic quantum number m 
denoting the magnitude of Lz, and the spin quantum number sz. 
 
The energy diagram of the hydrogen atom was shown in Fig.8. The energy of a 
quantum state is determined only by the principal quantum number n and does not 
depend on the other quantum numbers. Therefore, for each quantum state specified by 
n, there exist several different states with different values of the other quantum numbers. 
States with the same energy are called degenerate in energy. It has been shown that for a 
given value of the principal quantum number n the values of the orbital quantum 
number l can take any integer value from 0 to n − 1 (see Physical Systems and Laws). 
Then, for a given value of n there exist 2n2 degenerate states different in l, m, or sz; 
Σ2(2l + 1) = 2n2, where the summation Σ is over l from 0 to n − 1. 
 
For multi-electron atoms the quantum state with the same n but different l differ in 
energy and the degeneracy in states is somewhat removed compared to the hydrogen 
atom. The Coulomb force acting on an electron in a multi-electron atom is not exactly 
proportional to the inverse square of the distance from the nucleus because of charge 
screening effects due to the presence of other electrons inside the orbit of the electron. 
The degeneracy of states with different values of l is only perfect in the case of a pure 
coulomb force inversely proportional to the inverse square of the distance. We shall 
discuss electronic configurations of multi-electron atoms in a later chapter (see Particles 
and Fields ) . 
 
One of the utmost important concepts in modern physics is that fundamental particles of 
the same kind are perfectly identical and indistinguishable with each other. If there exist 
more than one electron in a system, they follow the same Schrödinger equation and 
there is no way to differentiate them from one another. In 1925 Pauli discovered a 
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fundamental principle called the exclusion principle which governs the electronic 
configurations of atoms having more than one electron. The principle states that no two 
electrons can exist in the same quantum state. 
 
The quantum states of the electron in a complex atom having more than one electron are 
labeled by a set of quantum numbers just like those of the electron in the hydrogen 
atom. These quantum numbers are the principal quantum number, the orbital quantum 
number, the magnetic quantum number and the spin quantum number. For every 
electron in the atom, there is a unique set of the four quantum numbers which 
completely specifies the state of the electron. 
 
Because of Pauli's exclusion principle, one and only one electron can have a given set of 
the quantum numbers. In the normal configuration of an atom the electrons occupy 
quantum states of lower energies so that the total energy of the multi-electron atom 
becomes minimum, thereby only one electron occupies each of the quantum states. This 
way of arranging the electronic configurations in an atom fits well the configurations of 
multi-electron atoms and can explain the chemical activity of the elements, thus 
providing the underlying basis for the concept of valence bond for molecular bindings. 
 
Not only electrons but also protons and neutrons follow the exclusion principle. In 
general, it is known that any fermion with a half-odd integer spin (s = 1/2, 3/2, …) 
including quarks and leptons follow the exclusion principle. On the contrary, any 
number of photons can exist in the same quantum state. In general, any number of 
bosons of the same kind with an integer spin (s = 0, 1, 2, …) can exist in the same 
quantum state. 
 
The indistinguishability of identical particles from one another imposes an important 
condition on wave functions of a multi-particle system. The wave function of a 
stationary state of a system composed of two identical particles can be written as Φ(1, 
2), where 1 and 2 denote all the necessary variables to specify the states of the particles 
1 and 2 respectively. Since the particles are indistinguishable from each other, there 
should be no change in the probability density Φ*Φ if we exchange the two particles; 
 

*(1, 2) (1, 2) (2,1) (2,1)∗=Φ Φ Φ Φ  
 
This condition leads to either one of the two possibilities: 
 

(1, 2) (2,1) (31)= ±Φ Φ  
 
That is, the two-particle wave function is either symmetric or antisymmetric under the 
exchange of the two particles. The wave function Φ itself is not an observable quantity 
and it can change sign under the exchange of the two particles without changing value 
of any physically observable quantity (see Development of Fundamentals in Physics for 
more detailed discussion). 
 
Electrons or spin half-integer fermions obey the minus sign rule and photons or spin 
integer bosons obey the plus sign rule under the exchange of two identical particles. The 
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exclusion principle is a direct consequence of the antisymmetric property of two 
electron wave functions. If l = 2, the wave function must vanish because of its 
antisymmetric property (Φ(1, 1) = −Φ(1, 1) = 0). From this we can prove that no two 
electrons can exist in the same state. 
 
Unlike fermions, bosons can occupy the same state without any limit on their number. 
Thus, under appropriate circumstances quite a large number of identical bosons can 
occupy the same lowest energy state so that it causes a macroscopic quantum effect. 
This kind of phenomenon is called the Bose−Einstein condensation. We will discuss 
some of the condensation phenomena in a later chapter. 
 
The symmetry property of multi-particle wave functions under exchange of any pair of 
the particles has important effects on the statistical property of many particle systems. 
For example, in thermal equilibrium with a definite temperature the energy distribution 
of a particle depends upon whether the particle is a fermion or boson. 
 
In classical physics the probability P(ε)dε for finding a particle whose energy lies between 
ε and ε + dε is given by the Maxwell-Boltzmann distribution ( ) kTP e eα εε − −=  (see 
Physical Systems and Laws ). In quantum physics the probability for finding a fermion 
in a quantum state with energy ε is 
 

1

( ) 1 (for fermions)kTP e eα εε
−

⎡ ⎤= +⎣ ⎦  (32)  

 
and that for a boson is 
 

1

( ) 1 (for bosons)kTP e eα εε
−

⎡ ⎤= −⎣ ⎦  (33)  

 
Here the constant α depends on the properties of the particular system. The +1 term in  
Eq.(32) assures that P(ε) will never exceed 1 irrespective of values of a and ε in 
accordance with the exclusion principle. The −1 term in  Eq.(34) expresses that bosons 
can occupy the same state, so that P(ε) could become larger than 1. Both these 
distributions approach the classical Maxwell-Boltzmann distribution for ε � kT, but 
they are significantly different from the Maxwell-Boltzmann distribution at low values 
of kTε . In Fig.12 we show three distribution functions as a function of kTε . 
 

 
 

Figure 12. Three statistical distribution functions as a function of ( -1)ε α = . 
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It should be mentioned that to find the actual number of particles with an energy ε, the 
function P(ε) must be multiplied by the number of different states with this energy ε. 
 
We will describe short derivations of the distribution functions (32) and (33). Suppose 
that the probability for finding a particle with energy ε relative to the probability for 
finding no particle with energy ε is ( )expp e kTα ε−= − . The average number of the 
fermions with energy ε is P(ε) = p/(1 + p) = [(1/p) + 1]−1 and that of the bosons is P(ε) = 
(Σnpn)/(Σpn) = p/(1 − p) = [(1/p) − 1]−1. These give the correct distributions (32) and 
(33) (see Development of Fundamentals in Physics) for more detailed derivations). 
 
Finally we shall mention a little about the relativistic extension of the Schrödinger 
equation for electrons. In 1928, Dirac revised the Schrödinger equation to include spin 
and relativity and his theory revealed for the first time the existence of positrons (anti-
matter) associated with electrons (matter). 
 
The Schrödinger equation is linear in the time derivative of Ψ  but quadratic in the 
space derivatives of Ψ . Thus, the time and space coordinates are not treated on equal 
footing contrary to the relativistic requirement for the basic equations of elementary 
particles. Furthermore, spin of the electron has to be introduced in an ad hoc manner as 
an additional dynamical variable of the electron. 
 
Dirac's relativistic equation for free electrons is linear in both the time and space 
derivatives and given by 
 

2( ) 0E c mc β− ⋅ − =p Ψα  (34)  
 
where p = -i=∇ and E = i=∂t. 
 
Multiplying 2( )E c mc β+ ⋅ +pα  from the left, we can obtain the relativistic energy-
momentum-mass; relation applied on Ψ : 

2 2

2 2 2 2 4

( )( )

[ ( )] 0

E c mc E c mc

E c p m c

α β α β+ ⋅ + − ⋅ −

= − + =

p pG G
Ψ

Ψ
 (35)  

 
provided 2 2 2 2 2 4( ) .c mc c p m cβ⋅ + = +pα  This leads to the following relation which 
must be satisfied by αi s and β: 
 

2

2

1 ( , , ), 0 (for )

1, 0

i i j j i

i i

i x y z i jα α α α α

β βα α β

= = + = ≠

= + =
 (36)  

 
Obviously these cannot be satisfied if siα  and β are ordinary numbers. Dirac assumed 
that they are 4 × 4 matrices instead of pure numbers and Ψ  has four components 
instead of one. The product of two matrices A and B is not commutable and AB differs 
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from BA in general. If we denote elements of A by ija  and that of B by ijb  (i = 1,2,3,4; j 

= 1,2,3,4), the element ijc  of the product matrix C(= AB) is given by ij ik k jkc a b=∑  

where Σk is sum over k = 1, 2, 3, 4. 
 
An explicit example of the matrices siα  and β is 
 

0 1 0
0 0 1

i
i

i

σ
α β

σ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠
 (37)  

 
Here isσ  are 2 × 2 matrices called the Pauli matrices: 
 

0 1 0 1 0
1 0 0 0 1x y z

i
i

σ σ σ
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (38)  

 
The 4 × 4 matrices siα  and β operate upon the four component wave function Ψ . If we 
express the wave function by 
 

1

2

3

4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

Ψ
Ψ
Ψ
Ψ

 (39)  

 
the result of operating a matrix A on Ψ  is ( ) i j ji jA A=∑Ψ Ψ . 

 
There exist four solutions of  Eq.(34) for a given value of momentum p. They are 
classified by the sign of energy and the direction of spin of the electron. For example, if 
we consider the electron at rest (p = 0), the Dirac equation becomes EΨ  = mc2βΨ , or 
EΨ 1 = mc2Ψ

1, EΨ 2 = mc2Ψ
2, EΨ 3 = −mc2Ψ

3, EΨ 4 = −mc2Ψ
4. Thus, there exist 

two positive energy solutions with energy mc2 and two negative energy solutions with 
energy −mc2. They are 
 

2

1 0
0 1
0 0
0 0

E mc

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 
and 
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2

0 0
0 0
1 0
0 1

E mc

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ = −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 
If we define the spin angular momentum of the electron by s = (=/2)Σ, where Σ is the 4 
× 4 matrix  
 

0
0

⎛ ⎞
=⎜ ⎟
⎝ ⎠

∑
α

α
 (40)  

 
then the four solutions can be classified by the sign of energy and the direction of spin: 
 

2 2 2 2

/ 2 / 2 / 2 / 2
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

z

E mc mc mc mc
s

+ + − −
+ − + −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= = = =

Ψ

 (41)  

 
Dirac's relativistic theory of the electron introduces the four-component wave function 
and incorporates in a natural way the spin and antimatter degree of freedom of the 
electron. The negative energy solutions are interpreted as the positive energy states of 
the antielectrons (positrons) as was proposed in the hole theory of electrons (see 
Particles and Fields ). According to this theory vacuum is the state in which all the 
negative energy states are occupied by electrons in accordance with the Pauli principle 
and all the positive energy states are empty. When an electron in a negative energy state 
moves into a positive energy state, we obtain an electron in that positive energy state 
and a hole in the negative energy state. This hole behaves as a particle with charge 
opposite to electrons and energy opposite to the negative energy of the state, thus can be 
identified as the positron or the antimatter of electrons. 
1. Quantum Mechanical Laws 
 
As we discussed in the introduction, any material particle has the wavelike property just 
like the wave of light. The wave nature of matter requires that a wave equation be used 
to find the displacement of the matter wave, which is a function of position and time. 
The theory of the material wave was formulated by Schrödinger in 1926. 
 
The wave of a material particle is usually denoted by Ψ (x, y, z, t) or Ψ (r, t), which is 
called the wave function of the particle. Let us consider a simple wave with wavelength 
λ and frequency ν  moving in one-dimensional space. Such a wave is expressed as 
 

[ ] [ ]sin 2 ( ) or  cos 2 ( )x t x tπ λ π λ− −ν ν  
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In 1925 de Broglie introduced a hypothesis that the wave nature and particle nature of 
matter are related by 
 

and    h E h pλ= =ν  (42)  
 
where E and p are the energy and momentum of the particle. 
 
If we use the de Broglie hypothesis, waves with definite frequency and wavelength can 
be expressed in terms of the energy and momentum of the material particle: 
 

( )( ) ( )( )sin 1/ or cos 1/px Et px Et− −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= =  
 
Any combination of the sine and cosine waves represents a wave propagating along the 
x-direction with wavelength λ and frequency ν . Since the concept of matter waves 
cannot be derived from any previous classical concepts, we allow a wave function to 
take a complex value in general. This is contrary to waves in classical physics which 
always take real values. By taking a certain combination of sine and cosine waves, we 
obtain a wave of exponential form: 
 

[ ]exp ( )i px Et= − =Ψ  (43)  
 
This form of wave is called the plane wave of a material particle. 
 
The plane wave has a simple property that its derivatives are equal to multiplications by 
constant factors upon the wave function: 
 

,i x p i t E− ∂ ∂ = ∂ ∂ == =Ψ Ψ ΨΨ  (44)  
 
These relations are interpreted as meaning that the momentum and energy of the particle 
may be replaced by the differential operators −i=∂/∂x and i=∂/∂t respectively, which 
operate on the wave function Ψ . 
 
The classical expression for the Hamiltonian of a particle with mass m is H = p2/2m + 
V(x), which is the energy E of the particle expressed in terms of the momentum and 
position of the particle. The wave equation for Ψ  is obtained as the equality H = E 
applied on the wave function, H Ψ  = E Ψ , whereby the differential operators are 
substituted for p and E. The result is 
 

( )2 2 22H m x V i t= − ∂ ∂ + = ∂ ∂= =Ψ Ψ Ψ Ψ  (45)  

 
This is the Schrödinger equation for one-dimensional matter waves. 
 
In three-dimensional space, the momentum and energy of a particle are expressed by the 
following differential operators acting on wave functions: 
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,i E i t= − ∇ = ∂p = =  (46)  

 
The Schrödinger equation for three-dimensional matter waves is 
 

( )2 22H m V i t= − ∇ + = ∂ ∂= =Ψ Ψ Ψ Ψ  (47)  

 
2 2 2 2where .x y z∇ = ∂ + ∂ + ∂  

 
The Schrödinger equation must be supplemented by additional conditions in order that 
its solutions have physical significance. The conditions are that Ψ  and its derivatives 
∇Ψ  and ∂tΨ  must be single-valued, finite and continuous everywhere in space and 
time. These correspond to conditions in classical physics that the position, momentum, 
and energy of a particle are finite and change continuously in time. 
 
Now we have to decide how to interpret the wave function of a particle. As inferred 
from the results of the double-slit experiments (see section 1), the intensity of the wave 
should provide a prediction of probable locations of the particle. We postulate that the 
probability that a particle is located within a small volume element dV at a position r is 
given by 
 

( , ) ( , ) ( , )P t dV t t dV=r r r∗Ψ Ψ  (48)  
 
where Ψ * is the complex conjugate of Ψ . Since Ψ *Ψ  is positive, P is positive too. 
 
The particle must be somewhere in the entire region of space, which requires that the 
probability P integrated over the entire space must be equal to 1: 
 

1dV∗ =∫Ψ Ψ  (49)  
 
When this condition is satisfied, the wave function is said to be normalized. An 
important consequence of the wave nature of matter and its probability interpretation is 
that any physical quantity associated with the particle cannot take a definite value in 
general, but instead its probability distribution is specified by the wave function. 
 
For example, the position of a particle described by a wave function Ψ  spreads over the 
region where Ψ  ≠ 0 and the average or expectation value of x component of r is given 
by 
 

( , ) ( , ) ( , )x xP t dV t x t dV∗< > = =∫ ∫r r rΨ Ψ  (50)  
 
Similar expressions are valid for the other components of r. 
 
The knowledge of P(r, t) allows us to calculate the expectation value of any function of 
r. For example, the average value of x2 is given by 
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2 2( , ) ( , )x t x t dV∗< > = ∫ r rΨ Ψ  (51)  

 
In general, < x2 > ≠ < x >2 unless P(r, t) has no spread in x. The value of Δx (≥ 0) 
defined by 
 

2 2 2 2( ) ( )x x x x xΔ =< − < > >=< > − < >  (52)  
 
indicates the shape of the probability distribution function P in x. 
 
Low values of Δx, Δy, and Δz indicate a sharp distribution and high values of them 
indicate a broad distribution in the position of the particle. A distribution that has no 
spread (Δx = Δy = Δz = 0) is one for which the probability of the particle being at a 
certain position is one and the probabilities of being at other positions are 0. A wave 
function with Δx = Δy = Δz = 0 corresponds to the particle locating at a definite position 
in space. 
 
Like < x >, the expectation values of the momentum and energy of the particle are given 
by 
 

*

*

( , ) ( ) ( , ) ,

( , ) ( ) ( , )t

t i t dV

E t i t dV

< >= − ∇

< > ∂

∫
∫

p r r

r r

=

=

Ψ Ψ

Ψ Ψ
 (53)  

 
As we will find later, < p > and < E > are real in spite of the presence of the factor i in 
the right-hand sides of  Eq.(51). We can also define the spreads of p and E similar to the 
spread of the position. 
 
It was realized by Heisenberg in 1927 that there is a fundamental limit to the accuracy 
to which position and momentum can be defined at the same time, although either the 
position or the momentum alone can be defined without any limit to the accuracy. 
 
In Fig.13 we show three typical forms of wave function in one-dimensional space. The 
function A has many well-developed sinusoidal waves with a definite wavelength, but 
the wave is not a pure sine wave because it is cut off at both ends. Therefore, the 
wavelength is not precisely defined and there is a small spread in its wavelength and 
thus in its momentum. Since the function A extends over a large distance, it represents a 
particle which has a well-defined momentum but a poorly-defined position. On the 
contrary, the function C represents a particle which has a well-defined position but a 
poorly-defined momentum. The function B represents an intermediate situation in which 
the position and momentum of a particle are defined with intermediate accuracies. 
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Figure 13. Three typical forms of wave function in one-dimensional space 
 
We can roughly estimate the relation between the spreads in position and momentum. 
For the wave function A we can take the length of the wave train as a measure of the 
uncertainty in position. If the wave train consists of n full waves, we obtain Δx ~ nλ ~ 
nh/p, where λ is the wavelength and p is the momentum. The uncertainty in wavelength 
would be roughly given by Δλ/λ ~ Δp/p ~ 1/n. From these rough estimates we obtain 

x p hΔ Δ ∼ . Similarly if we plot waves as a function of time at a fixed position, we can 
find that the product of the uncertainties in energy and time is roughly given by 

E t hΔ Δ ∼ . 
 
We can prove that the exact lower limit of x pΔ Δ  is equal to =/2, which is obtained for 
waves of a Gaussian form. From these results, it is clear that position and momentum 
cannot take definite values at the same time. Also we can prove that the lower limit of 

E tΔ Δ  is equal to =/2. For particles in three-dimensional space the exact uncertainty 
relations are 
 

2, 2, 2x y zx p y p z pΔ Δ ≥ Δ Δ ≥ Δ Δ ≥= = =  (54)  
 
and 
 

2E tΔ Δ ≥ =  (55)  
 
Notice that the uncertainty relations should be applied for a pair of the same 
components of the position and momentum vectors. 
 
For most quantum systems the product of uncertainties in position and momentum or in 
time and energy is 
 

~ ~ ~ ~x y zx p y p z p E t hΔ Δ Δ Δ Δ Δ Δ Δ  (56)  
 
as indicated by the rough estimates of the uncertainty relations based on Fig.13. In 
classical physics a state of a particle can be specified by assigning a point in the six-
dimensional phase space (r-p space) to the state, while in quantum physics we can 
specify a point in the phase space only within the uncertainties given by  Eq.(56). 
 
Therefore, we divide the whole phase space into small cells with constant volume h3 and 
assign one of the cells to denote a state of the particle, The volume of the unit cell is 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

DEVELOPMENT OF PHYSICS-Quantum Systems- G. Takeda 
 

©Encyclopedia of Life Support Systems (EOLSS) 
 

determined by the uncertainty relations and cannot be taken smaller than h3. Likewise, if 
a system is composed by N particles, we divide the phase space into small cells of 
constant volume h3N, each of which denotes a different state of the multi-particle 
system. 
 
In statistical physics it is important to know what microstates are and how we enumerate 
the number of microstates for a given macrostate (see Physical Systems and Laws ). The 
uncertainty relations (56) lead to a natural choice of microstates that each small cell 
with volume h3N in phase space corresponds to a microstate of a N-particle system. This 
is contrary to the situation in classical physics where any two neighboring points in 
phase space can be differentiated in principle and thus corresponds to different 
microstates of the system. 
 
Quantum systems are characterized by their probabilistic nature and consequently most 
of the physical quantities of a quantum system usually do not take definite values. 
However, states of a quantum system with a definite energy play important rolls 
because any isolated quantum system has a constant energy due to the energy 
conservation law. These states are called the stationary states of the quantum system. 
Wave functions for stationary states satisfy the following equation: 
 
i t E∂ ∂ == Ψ Ψ  (57)  
 
where E is the energy of the stationary state. The solution of  Eq.(57) is 
 

( )exp ( )iEt= − r=Ψ Φ  (58)  
 
where Φ is independent of time. The time-independent wave function Φ satisfies the 
following time-independent Schrödinger equation: 
 

( )2 22 ( )H m V E⎡ ⎤= − ∇ + =⎣ ⎦r=Φ Φ Φ  (59)  

 
A stationary state of a quantum system is characterized not only by its energy but also 
by other quantities with definite values. For example, a free electron moving at a 
constant velocity has a definite linear momentum and an electron orbiting the nucleus of 
an atom has a definite angular momentum. Also an electron has its spin angular 
momentum. 
 
In classical physics various physical quantities of a system can have definite values at 
the same time within experimental accuracies. Contrary to this, in quantum physics we 
have to ask under what conditions a physical quantity can have a definite value and 
what physical quantities can have definite values together with energy at the same time. 
 
Let us consider a physical quantity A which is an operator acting upon wave functions. 
If a wave function Ψ  satisfies the following equation 
 
A a=Ψ Ψ  (60)  
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with constant a, the wave function Ψ  is called the eigenstate of A with the eigenvalue 
a. Thus, a stationary state is an eigenstate of the Hamiltonian with eigenvalue E which 
is equal to the energy of the state. 
 
Since < A >= ∫ Ψ * AΨ dV = a ∫ Ψ *Ψ  dV = a, a is equal to the average or expectation 
value of A for the state Ψ . Furthermore, ΔA is zero forΨ ; (ΔA)2 = ∫ Ψ * (A − < A 
>)2Ψ dV = ∫ Ψ * (a − a)2Ψ dV = 0. Therefore, an eigenstate Ψ  is a state with a definite 
value of A given by a. Any eigenvalue of a physical quantity must be real, because 
measured values of the quantity are real. An operator whose eigenvalues are real is 
called a hermitian operator, and in quantum mechanics any physical quantity must be 
represented by a hermitian operator acting upon wave functions. 
 
Mathematically a hermitian operator A is defined by the condition that 
 

* *( )A dv A dvψ ψ=∫ ∫ϕ ϕ  (61)  
 
for any pair of wave functions ψ and ϕ  If ψ = ϕ  and ψ is an eigenstate of A with 
eigenvalue a, the hermitian condition (61) becomes a = a*, i.e. a is real. As an example, 
we can find that the momentum p (= −i=∇) is hermitian in spite of the presence of the 

factor i in it; ∫ ϕ *pψdV = ∫ϕ *(−i=∇ψ)dV = ∫ (i=∇ϕ *)ψdV = ∫ (−i=∇ϕ )*ψdV = ∫ 
(pϕ )*ψdV, where we used integration by parts in deriving the expression in the middle. 
 
Eigenvalues of a physical quantity are either continuous or discrete in a certain range of 
values allowed. In particular, when a system is confined in a finite region of space, 
eigenvalues of physical quantities take only discrete values contrary to the situation in 
classical physics where values of any physical quantity can be varied continuously. For 
example, energy levels of a hydrogen atom are discrete and angular momentum of any 
quantum system can take only discrete values quantized in unit of =. This discrete nature 
of physical quantities plays important roles in describing various quantum mechanical 
phenomena as we will find in a later chapter (see Particles and Fields ). 
 
Two eigenstates of a physical quantity A with different eigenvalues are orthogonal to 
each other. Consider two eigenstates ψa and ψa′, with eigenvalues a. and a′. Because of 
the hermiticity of A, we obtain ∫ ψ*

a′AψadV = ∫ (Aψa′)*ψadV. This leads to (a − a′) ∫ 
ψ*

a′ψadV = 0. If a ≠ a′, then we obtain the orthogonality relation ∫ ψ*
a′ψadV = 0: 

* 0 for 
,

1 fora a
a a

dV
a a

ψ ψ′
′≠⎧

= ⎨ ′=⎩
∫  (62)  

 
In general, we can express any state ψ as a linear superposition of the eigenstates of A; 
ψ = Σacaψa with constant coefficients ca. Then the average value of A is given by < A > 
= ∫ ψ*AψdV = Σaa⎪ca⎪2, and the probability for observing value a of A is ⎪ca⎪2. The 
normalization condition of ψ is Σa⎪ca⎪2 = 1. Because of the orthogonality conditions 
(62), the coefficients ca are given by ca = ∫ ψ*

aψdV. 
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If we make observation of a quantity A for a state ψ and obtain value a, then the state 
would change from ψ to the eigenstate ψa because the new state has the definite value a 
of A. This sudden change of state due to the observation is due to the probabilistic 
nature of wave functions. The information obtained through measurements changes the 
probability distribution of the system and thus the wave function. 
 
Next, we shall consider conditions for two quantities A and B can take definite values at 
the same time. We define the commutator of A and B by 
 
[ , ]A B AB BA= −  (63)  
 
When [A, B] = 0, we say that A and B commute with each other. 
 
When two quantities A and B commute, we can find wave functions which are 
eigenstates of both A and B at the same time. Let a,bΨ  is such an eigenstate with 
eigenvalue a for A and b for B: 
 

, , , ,,a b a b a b a bA a B b= =Ψ Ψ Ψ Ψ  (64)  
 
Since [A, B] a,bΨ  = (ab − ba) a,bΨ  = 0, there is no inconsistency between [A, B] = 0 

and a,bΨ  being an eigenstate of both A and B. In general, if two quantities commute, the 
both quantities can have definite values at the same time. On the contrary, if [A, B] = C 
(≠ 0), we obtain C a,bΨ  = 0, which means that a,bΨ  = 0 unless C = 0. Thus, two 
physical quantities which do not commute to each other cannot have definite values at 
the same time in general. 
 
If a quantity A commutes with the Hamiltonian H, i.e. [A, H] = 0, A can take definite 
values together with energy. Furthermore, A is conserved and the value of A does not 
change in time. Change of < A > in time is given by 
 

( ) ( )

( ) ( )

( )

*

* *

*
*

*

( )

(( )

[ , ]

d A dt d A dV dt

d dt A dV A d dt dV

A H dVi H A dV i

i H A dV

< > =

= + =

−

=

∫
∫

∫ ∫= =

=

Ψ Ψ

Ψ Ψ Ψ Ψ

Ψ ΨΨ Ψ

Ψ Ψ

)
 (65)  

 
Here we used the Schrödinger equation i=∂Ψ /∂t = HΨ  and its complex conjugated 

equation −i=∂ Ψ */∂t = (H Ψ )*. Also we used the relation ∫(H Ψ )*. A Ψ dV = ∫ 
Ψ *H(AΨ )dV due to the hermiticity of H. From the result, it is clear that A is conserved 
provided [H, A] = 0. 
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Classically the state of a particle is given by specifying its position and momentum and 
thus they are the most fundamental dynamical variables to describe motion of the 
particle. Commutation relations among these fundamental variables are 
 

, , ,x y zx p y p z p i⎡ ⎤= = =⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ =  (66)  

 
and all other commutators such as [x, y], [x, py], [px, py] are zero. These relations can be 
derived by substituting p by -i=∇. For example, [x, px] = x(−i=∂x) − (−i=∂x)x = i=. 
 
From the commutation relations we can derive the uncertainty relations (54). Thus the 
position and momentum of a particle cannot take definite values at the same time and 
we can only specify the position but not the momentum, or the momentum but not the 
position in quantum mechanics. 
 
[Proof of 2xx pΔ Δ ≥ = : Let us introduce f = (x − < x>)ψ and g = (px − < px >)ψ for an 
arbitrary wave function ψ. Since ∫ f *f dV⋅∫ g*g dV ≥ ⎪ ∫ f *⋅g dV⎪2 in general, we obtain 
(Δx)2(Δpx)2 ≥ ⎪ ψ* (x − < x >) (px − < px >) ψdV⎪2. Now introducing α = x − < x > and β 
= px − < px >, αβ = (αβ + βα)/2 + (αβ − βα)/2 = (αβ + βα)/2 + i=/2. The operator αβ + 
βα is hermitian and the value of ∫ ψ*[(αβ + βα)/2]ψdV is real. Then putting this real 
value equal to c, we obtain ⎪∫ ψ*αβψdv⎪2 = ⎪c + i=/⎪2 ≥ ⎪c⎪2 + (=/2)2 ≥ (=/2)2. This 
leads to 2xx pΔ Δ ≥ = .] 
 
In classical mechanics the angular momentum of a particle with respect to a given point 
in space is conserved, when the potential energy of the particle depends only on the 
distance from the particle to the given point. That is, the angular momentum is 
conserved when the Hamiltonian of the system is rotational invariant. 
 
The angular momentum L of a quantum system is defined by 
 

i= × = − ×∇L r p r=  (67)  
and L is conserved when L commutes with the Hamiltonian of the system. The angular 
momentum defined by  Eq.(67) is called the orbital angular momentum. 
 
The commutation relations for the components of the angular momentum can be easily 
calculated by using  Eq.(67) and they are 
 

, , , , ,x y z y z x z x yL L i L L L i L L L i L⎡ ⎤ ⎡ ⎤= = =⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦= = =  (68)  

 
By using  Eq.(68) we can find that any component of L commutes with the square of the 
angular momentum: 
 

2 2 2, , , 0x y zL L L⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦L L L  (69)  

 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

DEVELOPMENT OF PHYSICS-Quantum Systems- G. Takeda 
 

©Encyclopedia of Life Support Systems (EOLSS) 
 

From  Eqs.(68) and (69) only one of the three components of L and L2 can have definite 
values at the same time. 
 
Let us consider states with definite values of L2 and Lz. If we denote the eigenstates of 
both L2 and Lz by ψ λ,μ with eigenvalues λ=2 and μ= respectively, we have 
 

2 2
, , , ,  and  zLλ μ λ μ λ μ λ μψ λ ψ ψ μ ψ= =L = =  

 
We introduce operators L± = Lx ± iLy, whose commutation relations with Lz and L2 are 
 

2, 0, , , , 2z zL L L L L L L± ± ± + −
⎡ ⎤ = = ± =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦L = =  (70)  

 
Applying [L±, L2] = 0 upon ψλ,μ, we obtain 
 

2 2 2
, , ,L L Lλ μ λ μ λ μψ ψ λ ψ± ± ±= =L L =  

 
This means that L±ψλ,μ is the eigenstate of L2 with the eigenvalue λ=2. Applying [Lz, L±] 

= ±=L± upon ψλ,μ, we obtain 
 

, , ,( ) ( 1)z zL L L L Lλ μ λ μ λ μψ ψ μ ψ± ± ±= ± = ±= =  
 
This means that L±ψλ,μ is the eigenstate of Lz with eigenvalue (μ ± 1) =. Therefore, L+ 

increases the eigenvalue of Lz by 1 and L− decreases it by 1 in unit of =. If we apply L+ 
repeatedly n times on ψλ,μ we obtain an eigenstate with the eigenvalue of Lz equal to (μ 
+ n)=. For a given value of L2 (= λ=2) the eigenvalues of Lz must be limited by (μ + n)2 
≤ λ. Therefore, for a certain value of n, (L+)n+1ψλ,μ = 0 so that no eigenstate with an 
eigenvalue more than (μ + n)= exists. Putting μ + n = l, this means that L+ψλ,l = 0 and 

Lzψλ,l = l=ψλ,l. Applying the identities L− L+ = L2 − Lz(Lz + =) upon the eigenstate ψλ,l 
we obtain 
 

[ ]2 2
, , ,0 ( ) ( 1)l z z l lL L L L l lλ λ λψ ψ λ ψ− +

⎡ ⎤= = − + = − +⎣ ⎦L = =  

 
From this we obtain λ = l(l + 1), where l is the largest eigenvalue of Lz in unit of =. 
 
Applying L− repeatedly upon ψλ,l, we can obtain eigenstates of Lz with eigenvalues (l − 
1)=, (l − 2)=, etc. Again there must exist the lower limit of the eigenvalues of Lz so that 
(L−)n+1ψλ,l = 0 for a certain value of n. Then the lowest eigenvalue is given by μ = l − n. 
Applying the equality L+ L− = L2 −Lz (Lz − =) upon ψλ,l−n we obtain 
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2
, ,0 [ ( )( 1)]l n l nL L l n l nλ λψ λ ψ+ − − −= = − − − − =  

 
This leads to the condition λ = l(l + 1) = (l − n)(l − n − 1) or 2l = n. Thus the value of l 
must be either an integer or a half-integer. 
 
Summarizing, the eigenvalues of L2 and Lz are given by 
 

2 2: ( 1) ; 0, 1 2, 3 2,l l l+ =L = …  (71)  
 

: ; , 1, 2, , 1,zL m m l l l l l= − − − + −= …  (72)  
 
For a given value of l the eigenvalue of Lz can take (2l + 1) different values given by  
Eq.(72). We will call l as the orbital quantum number and m as the magnetic quantum 
number of the state. 
 
The possible eigenvalues of L2 and Lz were derived solely by use of the commutation 
relations (68) among the components of the angular momentum. When the angular 
momentum is the orbital angular momentum defined by  Eq.(67), Lz expressed in terms 
of the spherical polar coordinates (r, θ, ϕ ) becomes Lz = −i=∂ϕ . The spherical polar 
coordinates are shown in Fig.14. 
 

 
 

Figure 14. The Spherical polar coordinates 
The eigenstates of Lz satisfy Lzψ = −i=∂ϕψ = μ=ψ and their ϕ  dependences are given by 
ψ ~ exp(iμϕ ). Since ϕ  ⇒ ϕ  + 2π means no rotation and ϕ  must be single valued, we 
obtain that exp(i2πμ) = 1. From this μ must be an integer and thus l also must be an 
integer too. 
 
The commutation relations (68) allow the possibility that the magnitudes of an angular 
momentum assume half-integer values such as l = 1/2 and l = 3/2 as shown by  Eq.(71). 
According to Stern-Gerlach experiments or electronic configurations of multi-electron 
atoms the electron has an additional degree of motion besides its orbital motion in 
space. The angular momentum of this additional degree of freedom of motion is called 
spin. There exist two spin states for the electron which means that the magnitude of the 
electron spin is 1/2 in unit of =(2l + 1 = 2, l = 1/2). 
 
The spin degree of freedom is incorporated into wave functions by assuming that wave 
functions of the electron have two components instead of one. Then the spin angular 
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momentum S is expressed as the matrix operator acting upon the two component wave 
functions: 
 

( )2 (73)=S = σ  
 
where σ is the Pauli matrix whose components are given by the following 2×2 matrices 
(see  Eq.(38)): 
 

0 1 0 1 0
, ,

1 0 0 0 1x y z
i

i
σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (74)  

 
The components of the spin satisfy the commutation relations (68) as we can easily 
check, and thus spin S is qualified as an angular momentum. If we denote a two 
component wave function by 
 

1

2

( , )
( , )

( , )
t

t
t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

r
r

r
Ψ

Ψ
Ψ

 (75)  

 
the spin acts upon Ψ  according to the multiplication rule of matrices upon two 
component vectors. If A is a 2×2 matrix whose elements are Ai,j (i = 1, 2, j = 1, 2), then 
(AΨ )i = ΣjAijΨ j. 
 
The eigenstates of Sz satisfy 
 

( ) ( )1 1 1 1

2 2 2 2

1 0
2 2

0 1z sS m
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞

= = =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−−⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= = =

Ψ Ψ Ψ Ψ
Ψ Ψ Ψ Ψ

 

 
Then we obtain two eigenstates with eigenvalues ms= = ±(1/2)=(ms = ±1/2): 
 

( ) ( )1 0
1 2 , 1 2

0 1s sm m↑ ↓
⎡ ⎤ ⎡ ⎤

= = = = −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

Ψ Ψ  (76)  

 
These states are called the spin up and down states respectively. 
 
We have discussed eigenstates of L2 and Lz at the same time. Similarly we can find 
eigenstates of L2 and any component of L at the same time. Such an eigenstate can be 
expressed as a linear combination of the eigenstates of L2 and Lz; Ψ = Σmcl,mψl,m, where 
cl,m are appropriately chosen constants and ψl,m the eigenstates of L2 and Lz with the 
quantum numbers l and m. 
 
In classical physics the angular momentum can direct in any direction and therefore 
there exist infinitely many states with different directions of the angular momentum for 
a given value of its magnitude. Contrary in quantum physics, any state of rotational 
motion with a given magnitude of angular momentum can be expressed as a linear 
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combination of the finite number of the eigenstates of L2 and Lz with the quantum 
numbers l and m. For example, the eigenstates of Sx can be expressed as Ψ  = 2−1/2(Ψ ↑ 
± Ψ ↓) whose eigenvalues are ± =/2. Here Ψ ↑ and Ψ ↓ are the spin up and down states 
with ms = ±1/2. 
 
Quantum physics provide a new insight about the meaning of energy, linear momentum 
and angular momentum. Let us consider a wave function Ψ (x, y, z, t) of a particle. The 
wave function at a time  
t + Δt displaced by a small time interval Δt is 
 

( )
( , , , ) ( , , , ) ( , , , )
1 ( , , , )
x y z t t x y z t t x y z t t

iE t x y z t
+ Δ = + Δ ∂ ∂

= − Δ =
Ψ Ψ Ψ

Ψ
 (77)  

 
where we used the substitution E = i=∂t. Thus the time translation of the wave function 
by Δt is equal to operating 1 iE t− Δ =  upon the wave function. This is exact when Δt is 
infinitesimally small. 
 
If we repeat the infinitesimal time translations n times, we obtain the translation 
operator ( )1 niE t− Δ =  for time displacement by nΔt. If we take the limit n ⇒ ∞ and Δt 
⇒ 0 with nΔt = T kept finite, we obtain the time translation operator for the finite 
displacement by T; 
 

( ) ( )lim 1 expn
n iET n iET⇒∞ − = −= =  

 
Here we used a mathematical formula limn⇒∞ (1 + x/n)n = exp(x). Thus the operator 
exp(−iET/=) is the time translation operator for a finite displacement T. Similarly 1 + 

ip⋅Δa/= is the spatial translation operator for an infinitesimal displacement Δa, and 

exp(ip⋅a/=) the spatial translation operator for a finite displacement a. Thus, in quantum 
physics, energy is the generator for time displacement and momentum the generator for 
spatial displacement. 
 
Also the angular momentum of a particle in quantum physics means a rotation operator 
for the position of the particle about an axis passing through the origin of the spatial 
coordinate. If we rotate a position (x, y, z) by an infinitesimal angle Δθ about z-axis, it 
moves to a position (x′, y′, z′) which is given by x′ = x − yΔθ, y′ = y + xΔθ, z′ = z. Then, 
ψ(x′, y′, z′, t) = ψ(x, y, z, t) + Δθ(−y∂x, + x∂y)ψ(x, y, z, t) = (1 + iΔθLz/=)ψ(x, y, z, t). In 

general, the operator (1 / )i L hθ+ Δ ⋅
G

 is the generator for an infinitesimal rotation Δθ  
and exp( / )i ⋅L =θ  the generator for a finite rotation θ , where the vectors Δθ  and θ  
express both the direction of the axis of rotation and the magnitude of the rotated angle. 
 
So far we considered that wave functions are time-dependent and follow the 
Schrödinger equation, while physical quantities such as position, momentum and 
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angular momentum are operators which are defined in time-independent ways. Instead, 
we can consider physical quantities as time-dependent ones and wave functions as time-
independent ones. If we take the latter view, the equation of motion for a physical 
quantity A can be written as 
 

( )[ ]( ) , ( )dA t dt i H A t= =  (78)  
 
which can be derived from  Eq.(65). This is called the Heisenberg equation of motion. 
 
The basic commutation relations between position and momentum are the same with  
Eq.(66) if we take them at the same time: 
 

( ), ( ) ( ), ( ) ( ), ( )x y zx t p t y t p t z t p t i⎡ ⎤= = =⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ ⎣ ⎦ =  (79) 

 
When A is a function of r and p, we can solve the Heisenberg equation of motion 
thereby using the commutation relations (79). 
 
The Heisenberg equations are of the same form with the classical Hamilton's equation 
of motion, if we replace the Poisson brackets by the corresponding commutators times 
i/=: 
 

( ) ( )Poisson Poisson[ , ] [ , ], [ , ] [ , ]i j i jH A i H A x p i x p⇒ ⇒= =  (80)  
 
Although the Heisenberg formalism using the Heisenberg equation is fully equivalent 
with the Schrödinger formalism in its content, we shall primarily use the Schrödinger 
formalism to describe quantum phenomena in this book. 
 
One of the basic ingredients of modern physics is that fundamental particles of the same 
kind are perfectly identical and indistinguishable with each other. If there are two 
electrons, they follow the same Schrödinger equation and there is no way to distinguish 
them from one another. In 1925 Pauli discovered the fundamental principle that governs 
the electronic configurations of atoms with more than one electron. His exclusion 
principle states that no two electrons in an atom can exist in the same quantum state. 
 
Let us consider a quantum system which consists of two identical particles. The wave 
function of the system is described by Ψ (l, 2), where 1 and 2 denote all the necessary 
variables to specify states of the particles 1 and 2. Since the two particles are 
indistinguishable, it should make no difference in the probability density ∗Ψ Ψ  of the 
system if the two particles are exchanged: 
 

*(1, 2) (1, 2) (2,1) (2,1)∗=Ψ Ψ Ψ Ψ  
 
From this the wave function Ψ (l, 2) must satisfy Ψ (2, 1) = exp(iα)Ψ (1, 2), where α is 
any real number. Since twice the exchange of the two particles corresponds to no 
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exchange, we obtain exp(2iα) = 1. This leads to exp(iα) = ±l. Therefore, Ψ (1, 2) must 
be either symmetric or antisymmetric under exchange of the two particles: 
 

(1, 2) (2,1)  symmetric, (1, 2) (2,1) antisymmetric = = −Ψ Ψ Ψ Ψ  (81)  
 
Contrary to ∗Ψ Ψ , the wave function Ψ  itself is not a measurable quantity, and it can 
be altered in sign by the exchange of the two particles. The results of experiments on 
many electron systems such as electronic configurations of multi-electron atoms show 
that the wave functions of these systems are totally antisymmetric under exchange of 
any pair of electrons in the systems. 
 
When quantum states of two electrons in an atom are ψa and ψb, the wave function of 
the two electron system is given as the product of ψa and ψb. Since the wave function 
must be antisymmetric, it must be written as 
 

{ }1 2(1, 2) 2 (1) (2) (1) (2)a b b aψ ψ ψ ψ−= −Ψ  (82)  
 
where 2−1/2 is the normalization factor. The wave function Ψ  vanishes for a = b, which 
means that no two electrons can exist in the same atomic orbit. If there exist n electrons 
in an atom, the wave function of the n-electron system is totally antisymmetric, which 
means that each of the n electrons must be in a different atomi orbit from the others. 
 
Contrary to electrons, a wave function of a multi-photon system is totally symmetric 
under exchange of any pair of photons. When two photons are in quantum states ψa and 
ψb, the two photon wave function is 
  

{ }1 2(1, 2) 2 (1) (2) (1) (2)a b b aψ ψ ψ ψ= +Ψ  (83)  
 
If the two states are identical (a = b), the wave function becomes Ψ  =21/2ψa(1)ψa(2). If 
the two photons were distinguishable, the wave function should be Ψ  = ψa(1)ψa(2) 
without the factor 21/2. Thus, the probability that the two photons are found in the same 
quantum state is twice what it is for distinguishable photons. The presence of a photon in 
a quantum state enhances the probability that other photons occupy the same state and any 
number of photons can exist in the same quantum state. This is contrary to the case of 
multi-electron systems where the presence of an electron in a state prohibits other 
electrons to occupy the same state. In general, the probability for finding n photons in the 
same state is enhanced by a factor n! when compared to the probability for distinguishable 
particles. 
 
Electrons, protons, neutrons, and any other particle with a half-odd integer spin have 
totally antisymmetric wave functions. They are called fermions or Fermi-Dirac 
particles. Contrary to this, photons and any other particle with an integer spin have 
totally symmetric wave functions. They are called bosons or Bose-Einstein particles. 
 
Ordinary matter consists of electrons, protons and neutrons, all being fermions. The 
Pauli principle for fermions can give a simple and straightforward explanation for why 
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more massive objects are larger in size than less massive objects. In general, a more 
massive object has more fermions in it. If we keep adding more fermions, they have to 
occupy higher energy states with more spatial extension so that the fermionic 
configuration of the object is compatible with the exclusion principle. Therefore, the 
size of the object would become larger as we increase number of fermions. 
 
Statistical properties of multi-particle systems depend much on whether the particles are 
fermions or bosons. Let us consider multi-particle systems in thermal equilibrium at 
temperature T. We denote the number of different states of a single particle whose 
energy lie between ε and ε + dε by g(ε)dε. According to Maxwell-Boltzmann's 
distribution in classical physics, the probability for finding a particle with energy 
between ε and ε + dε is given by ( ) kTg e e dα εε ε− − . The value of α depends upon the 
total number of particles N in the system and is determined by 
 

/( ) kTg e e d Nα εε ε− − =∫  (84)  
 
In quantum physics the probability for finding a boson in quantum states with energy 
between ε and ε + dε is 
 

1( ) ( ) [ 1]kTP d g d e eα εε ε ε ε −= −  (85)  
 
which is called the Bose-Einstein distribution for Bose particles. For multi-fermion 
systems the probability is given by 
 

1( ) ( ) [ 1]kTP d g d e eα εε ε ε ε −= +  (86)  
 
which is called the Fermi-Dirac distribution for fermions. Short derivations of Bose-
Einstein and Fermi-Dirac distributions were given in an earlier chapter (see section 
1)(see  Eqs.(32) and (33)). 
 
For large values of ε (ε �  kT) the two distribution functions coincide with the 
Maxwell-Boltzmann distribution function, because eαeε/kT �  1 and the ± term in  
Eqs.(85) or (86) can be neglected. In Fig.12 of the previous chapter ( see section 1 )  we 
plotted the three distributions as a function of ε for a given value of α. The Bose-
Einstein distribution is always higher than the Maxwell-Boltzmann distribution, while 
the Fermi-Dirac distribution is always lower. 
 
The quantum nature of multi-particle systems becomes apparent at relatively low 
temperatures, for which the discrete nature of energy levels is important. This can be 
shown by the following distribution of electrons in a metal. The Fermi-Dirac distribution 
plays important roles in understanding various physical properties of multi--electron 
systems such as electric conductivity of metals due to electrons. Putting α = −εF/kT, the 
Fermi-Dirac distribution for fermions can be written as 
 

{ } 1
( ) ( ) exp ( ) 1FP g kTε ε ε ε

−
⎡ ⎤= − +⎣ ⎦  (87)  
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The energy εF is called the fermi energy of the system. At T = 0, we obtain f(ε) = 1 for ε 
< εF and f(ε) = 0 for ε > εF, where f(ε) = P(ε)/g(ε). Thus at absolute zero temperature all 
energy states up to εF are fully occupied by fermions, while energy states above εF are 
all empty. If a system contains N fermions, we can obtain εF by filling up its energy 
states with the N fermions in order of increasing energy up to εF starting from the lowest 
energy state. 
 
As the temperature increases above T = 0 but with kT still smaller than εF, some 
fermions will leave states just below εF and move into states just above it. The 
distribution functions of fermions at T = 0 and at a small value of T(�  εF/k) are shown 
in Fig.15. 

 
 

Figure 15. The distribution functions P(ε) of fermions at T=0 and a small value of T 
 
Even at room temperature, the Fermi energy of electrons in a metal is much higher than 
kT. Thus the energy distribution of electrons in a metal is like the distribution shown in 
the figure for kT �  εF. This has decisive effects on physical properties of metals. For 
example, only a small fraction of electrons in metals can contribute to electric 
conductivity of metals. When an electric field is applied to metals, only those electrons 
near the Fermi energy can contribute to the electric current because other electrons deep 
below the fermi energy cannot move to higher energy states since they are occupied by 
other electrons (see Particles and Fields ). 
 
For a multi-boson system the distribution function P(ε) is given by  Eq.(85). Since P(ε) 
must be positive for any value of ε, ε−α cannot be greater than exp(ε0/kT) where ε0 is the 
lowest single particle energy for the bosons. We can take ε0 as zero when the volume of 
the system is sufficiently large. Then, we require that α ≥ 0. As α approaches 0, the 
occupation number of the zero-energy state becomes infinitely large. The growth of this 
occupation number is actually limited by the total number of bosons available, but it can 
be shown that a significant fraction of the bosons can occupy the lowest energy state. 
This phenomenon is known as Bose-Einstein condensation, which is the basic cause of 
superfluidity and superconductivity. We shall describe some of these condensation 
phenomena in a later chapter ( see Particles and Fields ). 
 
Finally we shall mention a few words about the connection between the spin and 
statistics of the particles. Based upon the present quantum field theories we can prove 
that particles with an integer spin follow the Bose-Einstein statistics and those with a 
half-integer spin follow the Fermi-Dirac statistics. These results are obtained based 
upon the relativistic invariance of the theories and the locality of the field corresponding 
to the particle. 
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