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Summary 
 
Although crystalline solids are composed of many interacting electrons and nuclei, many 
of their most important and useful properties may be described by single-electron 
quantum mechanics.  Solids have discrete translational symmetry which means that there 
is an associated conserved quantity, the wavevector or crystal momentum.  The 
single-electron energies are accordingly functions of the wavevector.  The semi-classical 
equations of motion for an electron near a band extremeum show that derivatives of these 
energies with respect to the wavevector are related to the electron velocities and effective 
masses.  Different methods have been developed for calculating the single-electron 
energies.  Two of the most commonly employed are the pseudopotential method, which is 
based on extended states, and the tight-binding method, which is based on localized, 
atomic-like orbitals. 
 
1. Introduction 
 
1.1 The Many-Electron, Many-Ion Problem 
 
Solids are composed of atoms of various types, held together by electrostatic interactions.  
Solids are characterized by greater or lesser degrees of order:  most exhibit long-range 
order. Macroscopic examples of single crystals are more familiar than might first be 
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imagined:  diamonds and the thumbnail-sized silicon integrated circuits found in 
computers, audio and video equipment, automobiles and numerous other devices and 
appliances, for example. (Indeed, these silicon integrated circuits were in all likelihood 
cut from wafers which were originally part of a huge single silicon crystal 30 cm in 
diameter.) The interactions of the electrons and atomic nuclei in a given material 
determine its properties; the electrical characteristics (conducting, semi-conducting, or 
insulating) are most often employed in classifying substances. These properties are 
calculated using quantum mechanics, although the enormity of the problem -- there are of 
the order of 1022 atoms per cubic centimeter in many semiconductors -- would seem at 
first to render these calculations impossible. Actually, many of the most important 
properties of everyday materials are well-described by a single-electron (more properly, a 
single quasi-electron) picture, which treats all of the electrons in a solid as being 
independent and non-interacting, moving in a potential which incorporates both the 
electron-ion potential and an averaged interaction with all of the other electrons. This is 
commonly referred to as the self-consistent field approximation. 
 
The reduction from many- to a single-particle quantum mechanics begins with an 
observation from atomic physics:  changes in the configuration of the valence electrons 
do not significantly affect that of the core electrons. Thus the core orbitals are essentially 
fixed, regardless of the valence orbitals, and are unaltered in the variational calculation 
below. The full many-electron, many-ion Hamiltonian, ignoring relativistic effects, is: 
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where pj, rj (Pi, Ri) are electron (ion) momenta and coordinates, respectively; and Vi-i 
and Ve-i are the ion-ion and electron-ion interactions, respectively. Equation (1) can be 
greatly simplified by taking advantage of the great disparity in the electron (m) and ion 
(Mi) masses. The fact that an ion is many thousands of times more massive than an 
electron suggests that the electrons might be treated in a first approximation by 
considering their motion in a fixed crystal (i.e., with all ions in their equilibrium 
positions), ignoring the ion motion which is expected to be rather insensitive to changes 
in the electron configuration. This results in separate electron- and ion-problems, the 
simplest approximation for the ion problem being that of quantum harmonic oscillators 
and leading to quantized lattice vibrations (phonons). Similarly, the ion coordinates 
appear as parameters in the electron problem:  to lowest order the ions are assumed fixed 
at their equilibrium positions and electron and ion problems become decoupled. Since 
electron scattering by phonons is important, it is often desirable to consider the change in 
the electron-ion interaction potential from its equilibrium value to first order in the ion 
displacements. This is, however, easily treated for most cases of interest by perturbation 
theory applied to the solutions of the electron problem for the fixed crystal. Although 
limitations of space and scope preclude a rigorous justification of this separation, it is 
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nevertheless clear that the starting point is the electron problem for the fixed crystal.  The 
Hamiltonian for this system is: 
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where the Ri are now the equilibrium ion positions.   
 
Equation (2) is still formidable for it is a many-electron problem.  Since electrons are 
fermions, the many-electron wavefunction must be anti-symmetric under the exchange of 
any two electrons (Pauli Exclusion Principle). This anti-symmetry is enforced by 
choosing as basis states Slater determinants: 
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where the jϕ  are single-particle orbitals with compound (spatial and spin) index i and 

respective spatial and spin coordinates r and η.  The jϕ  are of course unique (otherwise 

Φ  would vanish) and are taken to be orthonormal. In general, the solution of the 
time-independent Schrödinger equation for Hamiltonian (2) is a superposition of Slater 
determinants (3), and indeed, more than one basis state is required to describe many 
phenomena, excitons, for example.  Intuition suggests, however, that the dominant 
single-particle properties of solids may be described by a single basis state (3).  Obtaining 
the best possible single-Slater determinant solution involves minimizing HΦ Φ〈 | | 〉  with 
respect to arbitrary variations of the jϕ  and leads to the Hartree-Fock equations, as in 
atomic and molecular physics.  In coordinate-space notation these are: 
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where the j = i term has been included in both summations since its appearance in the first 
is exactly canceled by its presence in the second. 
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Since the Hamiltonian (2) lacks any explicit spin dependence, the jϕ  may be taken to be 

spin orbitals, products of purely spatial and spin functions:  ( ) ( )1 , ( );i iη Σϕ η ψ δ=r r , 

where ( )iΣ  denotes the spin state of the composite index i.  Note that if jϕ  and jϕ′  differ 

only in spin state (e.g., one is spin up and the other is spin down), ( ) ( )j jψ ψ ′=r r .  Also, 
it is easily seen that only parallel spins contribute to the second sum in (4), so that the 
Hartree-Fock equations for spin orbitals now read: 
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The first electron-electron interaction term in (5) is referred to as the direct (or Hartree) 
term and represents the (repulsive) Coulomb potential due to the charge of all the 
electrons in the system; it is identical for all orbitals.  The second electron-electron term is 
called the exchange term and differs depending upon the orbital. It can lower the total 
energy of the system, unlike the direct term.  Exchange interactions are responsible for 
magnetism. 
 
The Lagrange parameters Ei appearing in equation (5) are not merely mathematical 
objects:  they also have physical meaning, given by Koopman’s Theorem. The key 
assumption of the theorem is that for a large number of electrons, N, removing one 
electron (e.g., that occupying the k-th orbital) will not significantly alter the remaining 
(N-1) orbitals. Note that, as physically reasonable and intuitively satisfying as this is, it 
remains an assumption, for as is clear from equation (5) the orbitals of the N and 
(N-1)-electron systems are in general different.  If, as is usually the case, this assumption 
holds, it follows directly from equation (5) that the difference in the total energy 
expectation value between the N-electron Slate determinant Φ| 〉  and the (N-1)-electron 
Slater determinant from which the k-th orbital has been removed, Φ−| 〉 , is just Ek. 
 
Further approximations are required to reduce the problem to that of N identical, 
non-interacting (quasi) electrons, for the N Hartree-Fock equations (5) are not identical 
due to the exchange term.  Slater has suggested several approximations for dealing with 
this difficulty, including replacing the exchange term by a potential proportional to the 
cube root of the total electron density, motivated by the solution of the free-electron 
Hartree-Fock equations. Alternatively, he suggests replacing the exchange term by a 
weighted average over orbital probability density.  Regardless of the particular 
approximation employed, the result is N identical single-electron problems 
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where in (6) V(r) includes the electron-ion, direct, and (approximate) exchange 
potentials. Note that in the many-electron problem which lead to equations (6), the Pauli 
exclusion principle is explicitly integrated deep in the structure of the solution, as 
expressed in the construction of the Slater determinant, for any such determinant having a 
non-unique orbital (i.e., ,j k j kϕ ϕ= ≠ ) vanishes. It remains (although less obviously) in 
the case of the N identical non-interacting single (quasi) electron problems, equations (6). 
Here, in the non-interacting electron problem the Hamiltonian is a sum of N single-body 
operators, and hence there exists a single Slater determinant which is its exact eigenstate. 
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