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Summary 
 
An account is provided of the two existing approaches to the study of non-equilibrium 
processes. The macroscopic approach is illustrated with the principles of linear 
irreversible thermodynamics as applied to a multicomponent mixture of chemically inert 
fluids. Kinetic theory for a dilute gas and the fluctuation-dissipation relations are used to 
highlight the microscopic approach. Modern developments, merits and limitations of 
both approaches are briefly mentioned. 
 
1. Introduction 
 
Classical thermodynamics, which should perhaps be referred to more properly as 
thermostatics, deals with the study of macroscopic physical systems whose attributes 
(say temperature, pressure, magnetization, etc.) do not depend on time. That is, the 
subject of classical thermodynamics is the study of the equilibrium states of 
macroscopic systems. Although at first sight different, the air coming out of the hole in 
a punctured tire, the fact that when a pendulum is put to oscillate freely in air its 
oscillations become progressively damped until the pendulum eventually stops, and the 
fact that a living organism first is born, then grows and becomes older and older until it 
finally dies, share a common characteristic: in contrast with what happens say with 
melting and freezing or evaporation and condensation (which may be recognized as 
pairs of inverse or reversible processes well accounted for by classical thermodynamics), 
the aforementioned phenomena involve a time-dependent process, seem to occur 
spontaneously and in a single direction. A wealth of other phenomena occurring in 
nature also catches our attention because of this reason, namely the occurrence of 
irreversible (non-equilibrium) processes.  
 
The study of such phenomena is probably as ancient as man himself. However solid 
understanding and theoretical developments were only achieved by the mid eighteenth 
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century and efforts to get a deeper insight into these phenomena continue up to the 
present day. These developments are the results of direct observation and 
experimentation as well as of the attempts to understand, interpret and predict them on 
the basis of the corpuscular nature of matter and radiation. A desirable goal within this 
latter approach is the derivation of general laws starting with the more basic ones that 
describe the behavior of the particles that form the system under observation. The 
phenomenological approach to the study of these irreversible phenomena lies within 
what is called nonequilibrium thermodynamics or thermodynamics of irreversible 
processes (TIP). On the other hand, the approach that takes as point of departure the 
fundamental laws that underlie the interactions between the particles of the system may 
be classified (due to subtle differences) as either the kinetic theory of matter, mainly 
applicable to fluids, or  as statistical mechanics, but nowadays it is generally known as 
the statistical physics of irreversible processes. 
 
In what follows, we will try to provide a rather brief but hopefully self-contained 
account of the macroscopic and microscopic approaches for the description of non-
equilibrium processes. This will include a mention of the merits and limitations of the 
available developments as well as some perspective for future ones. 
 
2. Non-equilibrium Thermodynamics 
 
2.1. Classical (linear) Irreversible Thermodynamics 
 
When dealing with the thermodynamic description and study of the non-equilibrium 
states and processes that occur in a given system, a fundamental question concerns the 
choice and number of macroscopic variables. A natural idea is to use in a judicious way 
the same thermodynamic variables that one considers in equilibrium. Hence, two basic 
hypotheses underlie the formulation of the classical theory of irreversible processes. 
One the one hand, for each position r, conceived as representative of a volume element 
small enough macroscopically to be considered a point at time t one assumes that it is 
possible to define univocally the thermodynamic parameters. And the other hypothesis, 
referred to as the local equilibrium hypothesis, states that the same functional 
relationship that these thermodynamic parameters maintain in equilibrium also holds for 
non-equilibrium situations. This implies in particular the local (in time and space) 
validity of the Gibbs relation which will now involve the time and space variation of the 
thermodynamic parameters. Equivalently, it also implies that the change in entropy per 
unit volume and unit time is equal to the entropy flux per unit area and unit time plus 
the entropy production per unit time. In accordance with the second law of 
thermodynamics, this (local) entropy production is assumed to be non-negative. In turn, 
since the space and time variation of the thermodynamic parameters appears in balance 
equations expressing the conservation of the relevant physical quantities, such 
parameters are referred to generically as conserved variables.  
 
The forces required to drive a system out of (thermodynamic) equilibrium are in general 
related to the space and/or time variation of the thermodynamic variables. In an attempt 
to return to equilibrium, the response of the system to such forces is in terms of fluxes 
of the appropriate kind that arise to counteract their effect. Using the appropriate 
balance equations for the conserved variables of the system, one finds that the entropy 
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production is a sum of products of fluxes and thermodynamic forces. As a first 
approximation, one can reasonably assume that the forces (either gradients or time 
derivatives) and the fluxes are linearly related. The ensuing coupling 
(phenomenological) coefficients are the so-called transport coefficients. A theorem due 
to Curie also allows that forces and fluxes of the same tensorial nature be coupled. 
Within certain limits (loosely speaking close to equilibrium), these two facts have been 
amply confirmed by experiment. A final assumption, rooted on the regression of 
fluctuations hypothesis and on the principle of microscopic reversibility but also 
confirmed by experiment, is that the phenomenological coefficients associated to cross 
couplings of thermodynamic forces in different fluxes of the same tensorial nature are 
equal. This is known as the Onsager reciprocity relations. These assumptions, together 
with the requirement of a non-negative entropy production, impose restrictions on the 
sign of the transport coefficients.  
 
Among the non-equilibrium states of a system, those that do not change with time, i.e., 
the stationary states, are particularly important. In fact, provided the phenomenological 
coefficients do not depend on time either and obey Onsager reciprocity, it can be shown 
that in a stationary state the entropy production is a minimum. A more general result, 
not involving the above assumptions, indicates that for stationary states in which the 
change of the entropy production is due to the rate of change of the thermodynamic 
forces such a change will be negative. Further, if the sum of the products of the rate of 
change of the fluxes and the thermodynamic forces is also non-negative, the entropy 
production will decrease as time proceeds until the stationary state is reached. 
 
In order to illustrate the above theoretical framework let us consider a multicomponent 
mixture of N chemically inert fluids. Let us first of all recall that the balances of mass, 
momentum and energy for this system are given by 
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Here, iρ is the mass density of species i,  is the mass flux of species i,  is the 

hydrodynamic velocity (associated with the momentum density), 
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mass density, v 1τ τ τ ′≡ +  is the viscous stress tensor (τ being its trace, 1 the identity 
second rank tensor and τ ′  the traceless part) associated with the momentum flux, p is 
the pressure, is the external force acting on species i, e is the internal energy density, 

the heat flux and 
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∂≡ + ⋅∇uqJ  stands for the material time derivative, with 
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( ), ,x y z
∂ ∂ ∂
∂ ∂ ∂∇ ≡  in Cartesian coordinates. Note that since , the usual 

continuity equation follows immediately from Eq. (1). Also note that the form of the 
balance equations has a simple structure. It states that the time rate of change of the 
conserved densities (indicated by the material time derivative) is due to the entrance or 
exit of the corresponding quantity at the particular position being considered (the term 
containing the divergence of the associated flux) and to the production or consumption 
(at the same location) of the quantity corresponding to each conserved density caused 
by internal processes. Thus for instance in the case of the balance equation for 

1 0N
ii= =∑ J

iρ and in 

the absence of chemical reactions, mass of the  component goes into or out of the 
position r (the mass flux is ) but it is not produced in internal processes; on the other 
hand, for the internal energy density the associated flux is the heat flux but the internal 
energy density also changes in time because of viscous and external force dissipation.  
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The thermohydrodynamic description is completed with the local Gibbs relation, which 
in this case, reads  
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where s is the entropy density and /i ic ρ ρ≡ and iμ  are the chemical potential and the 
concentration of species i, respectively. The time evolution of the entropy density as 
given in Eq. (4) is therefore intimately related to the balance equations (1) – (3). 
Furthermore, if rewritten in the form of a balance equation, it turns out that from the 
Gibbs relation one finds that the entropy flux  is given by sJ
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while the entropy production σ is  
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Equations (1) – (6) do not constitute a closed set unless one can express the pressure p, 
the chemical potentials iμ  and the fluxes , iJ τ , τ ′  and  in terms of the independent 

variables 
qJ

,  and e. Invoking the local equilibrium hypothesis, one can eliminate p, uiρ

iμ  and e in terms of the more convenient set of variables ρ , the concentrations 1N −

1 2 1, , Nc c c −… and the temperature T using the usual relations of equilibrium 
thermodynamics. In turn, the assumption on the linear laws together with the Curie 
theorem implies that   
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where ξ  is the bulk viscosity,  are related to the diffusion coefficients, are 

related to generalized Soret coefficients, 

T
iqLikL

λ is the thermal conductivity, are related to 
generalized Dufour coefficients and 

qkL
ν  is the shear viscosity. Note that the requirement 

that σ  be semi positive definite means that ξ , λ and ν  are positive,  while the 

Onsager reciprocity implies that . Also note that, while other (more 
convenient) choices of forces and fluxes may be made depending on the physical 
problem under examination, the entropy production should remain invariant irrespective 
of the choice. Upon substitution of the linear laws, Eqs. (7) – (10) , into Eqs. (1) – (3) 
one gets the Navier-Stokes equations for the multicomponent mixture of inert fluids. 
Their explicit form is not very illuminating and therefore will be omitted. Suffice it to 
mention here that, from the mathematical point of view, such equations are parabolic 
partial differential equations so that the irreversible processes are described as diffusive 
phenomena. Application of these equations to actual problems depends on the 
specification of initial and boundary conditions on 

ik kiL L=
T

qi iqL L=

ρ , ,  and T as well as on the 
availability of all the transport coefficients. These may come either from experiment or, 
in some cases, are the result of a microscopic approach.  

uic

 
While, as mentioned earlier, this theory has received vast experimental confirmation, 
the same experiments have provided a rather precise idea of the limits in which the 
assumptions cease to be valid. In one important class of experiments, a system is 
allowed to equilibrate in some sort of field, which is shut off, at 0t = , and the relaxation 
back to the original equilibrium is followed. It takes a certain time, called the relaxation 
time, before the response of the system (the corresponding flux) becomes linearly 
related to the force. Within this period, the application of the classical theory is certainly 
inadequate. In turn, such knowledge (of which J. C. Maxwell was already aware) and 
other similar facts have given rise to different extensions and generalizations of the 
classical theory with varying degrees of success, in which the main (common) feature is 
the recognition that the purely diffusive description is no longer valid and that one 
should consider hyperbolic transport instead. However, none of these approaches, up to 
the present day, stands out as the universally accepted framework to deal with general 
non-equilibrium processes.  
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