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Summary 

 

The background and motivations of constructive quantum field theory are sketched, and 

the Wightman and Haag–Araki–Kastler axioms are specified. The goals of constructive 

and axiomatic quantum field theory are briefly indicated.  

 

The rest of the chapter consists of briefly describing the methods and results of various 

mathematically rigorous approaches to the construction of quantum field models. This 

work is roughly organized by method and by chronology.  

 

The chapter closes with an outlook on the status and future of constructive quantum 

field theory.  

 

1. Introduction: Background and Motivations 

 

Quantum field theory (QFT) is widely viewed as one of the most successful theories in 

science — it has predicted phenomena before they were observed in nature (for 

example, the existence and properties of the W and Z bosons, as well as the top and 

charm quarks, were predicted before they were found experimentally) and its 

predictions are believed to be confirmed by experiments to within an extraordinary 

degree of accuracy (for example, the two parts in one billion difference between the 

theoretical prediction from the Standard Model and the experimentally measured value 

of the anomalous magnetic moment of the muon).  
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Though it has undergone a long and complex development from its origins — a certain 

amount of arbitrariness and personal taste must go into pointing to a single point of 

origin, since the 1927 discussion of a quantum theory of electromagnetic radiation by 

Dirac as well as the studies of relativistic wave mechanics by Dirac, Schrödinger and 

even de Broglie were influential; in any case, the interested reader should see Schweber 

(1994) for a detailed account of the birth of QFT — in the 1929/30 papers of 

Heisenberg and Pauli and has attained an ever increasing theoretical sophistication, it is 

still not clear in which sense the physically central quantum field theories such as 

quantum electrodynamics (QED), quantum chromodynamics (QCD) and the Standard 

Model (SM) are mathematically well defined theories based upon fundamental physical 

principles that go beyond the merely ad hoc. Needless to say, there are many physicists 

working with quantum field theories for whom the question is of little to no interest. But 

there are also many who are not satisfied with the conceptual/mathematical state of 

quantum field theory and have dedicated entire careers to an attempt to attain some 

clarity in the matter.  

 

This is not the place to explain the grounds for this dissatisfaction; instead, the goal of 

this chapter is to provide a perspective on ―constructive quantum field theory‖ (CQFT), 

the subfield of mathematical physics concerned with establishing the existence of 

concrete models of relativistic quantum field theory in a very precise mathematical 

sense and then studying their properties from the point of view of both mathematics and 

physics. Although the insights and techniques won by the constructive quantum field 

theorists have proven to be useful also in statistical mechanics and many-body physics, 

these successes of CQFT are not discussed here. In addition, we shall restrict our 

attention solely to relativistic QFT on d  dimensional Minkowski space, 2d  ; to this 

point, most work in CQFT has been carried out precisely in that context. Throughout, as 

is customary in QFT, we adopt physical units in which 2 1c h    where c is the 

velocity of light and h  is Planck’s constant.. 

 

In the 1950’s and early 1960’s various ―axiomatizations‖ of QFT were formulated. 

These can be seen to have two primary goals — (1) to abstract from heuristic QFT the 

fundamental principles of QFT and to formulate them in a mathematically precise 

framework; (2) on the basis of this framework, to formulate and solve conceptual and 

mathematical problems of heuristic QFT in a mathematically rigorous manner. As it 

turned out, the study and further development of these axiom systems led to 

unanticipated conceptual and physical breakthroughs and insights, but these are also not 

our topic here.  

 

The first and most narrow axiomatization scheme of the two briefly discussed here is 

constituted by the Wightman axioms (see e.g. Streater and Wightman (1964)). This 

axiom system adheres most closely to heuristic QFT in that the basic objects are local, 

covariant fields acting on a fixed Hilbert space. A (scalar Bose) Wightman theory is a 

quadruple  , , ,U   consisting of a Hilbert space , a strongly continuous unitary 

representation U  of the (covering group of the) identity component 
  of the Poincaré 

group acting upon , a unit vector   which spans the subspace of all vectors in 

 left invariant by  U 
  (This condition, referred to as the ―uniqueness of the 
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vacuum,‖ is posited for convenience. With known techniques one can decompose a 

given model into submodels that satisfy this condition as well as the remaining 

conditions.) and an (unbounded) operator valued distribution (Although it is possible, 

indeed sometimes necessary, to choose other test function spaces, here we shall restrict 

our attention to the Schwartz tempered test function space  d .)   such that for 

every test function f , the operator  f  has a dense invariant domain  spanned by 

all products of field operators applied to  . These conditions are a rigorous formulation 

of tacit assumptions made in nearly all heuristic field theories. In addition, a number of 

fundamental principles were identified and formulated in this framework.  

 

Relativistic Covariance: For every Poincaré element  ,a 
   one has 

       
1

, ,U a x U a x a 


     , in the sense of operator valued distributions on 

. 

 

Einstein Causality: (Also called microscopic causality, local commutativity or, 

somewhat misleadingly, locality.) For all spacelike separated 
4,x y  one has 

       x y y x     in the sense of operator valued distributions on . 

 

The Spectrum Condition (stability of the field system): Restricting one’s attention to 

the translation subgroup 4 
 , the spectrum of the self-adjoint generators of the 

group  4U  is contained in the closed forward lightcone 

  4 2 2 2
0 1 2 3 0 2 3, , , 0V p p p p p p p p       . 

 

The reader is referred to Streater and Wightman (1964), and Jost (1965) for a discussion 

of the physical interpretation and motivation of these conditions. There is an equivalent 

formulation of these conditions in terms of the Wightman functions (Streater and 

Wightman 1964)  

 

       1 2 1 2, , , , ,n n nW x x x x x x n     . 

 

which are distributions on  dn . These two sets of conditions are referred to 

collectively as the Wightman axioms. There are closely related sets of conditions for 

Fermi fields and higher spin Bose fields (Streater and Wightman 1964, Jost 1965).  

 

A more general axiom system which is conceptually closer to the actual operational 

circumstances of a theory tested by laboratory experiments is constituted by the Haag–

Araki–Kastler axioms (HAK axioms), also referred to as local quantum physics or 

algebraic quantum field theory (AQFT). Although more general formulations of AQFT 

are available, for the purposes of this paper it will suffice to limit our attention to a 

quadruple (In point of fact, these conditions actually describe an algebraic QFT in a 

(Minkowski space) vacuum representation. By no means is AQFT limited to such 

circumstances; some other representations of physical interest are briefly discussed 
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below. Moreover, the algebraic approach to QFT has proven to be particularly fruitful in 

addressing conceptual and mathematical problems concerning quantum fields on curved 

spacetimes.)    , , ,U


  with , U  and   as above and   


 a 

net of von Neumann algebras    acting on , where  ranges through a suitable 

set  of nonempty open subsets of Minkowski space. The algebra    is interpreted 

as the algebra generated by all (bounded) observables measurable in the spacetime 

region , so the net   


 is naturally assumed to satisfy isotony: if 1 2 , 

then one must have    1 2 . In this framework the basic principles are 

formulated as follows.  

 

Relativistic Covariance: For every Poincaré element  ,a 
   and spacetime region 

  one has        
1

, ,U a U a a


     . 

 

Einstein Causality: (Also often referred to as locality.) For all spacelike separated 

regions 1 2,   one has AB BA  for all  1A  and all  2B . 

 

The Spectrum Condition (stability of the field system): Same as above.  

 

The reader is referred to Haag 1992, Araki (1999) for a discussion of the physical 

interpretation and motivation of these conditions. The relation between the Wightman 

axioms and AQFT is well understood. It is important to note that, in general, infinitely 

many different fields in the sense of the Wightman axioms are associated with the same 

net of observable algebras. Indeed, an analogy has often been drawn between the choice 

of a particular coordinate system, made in order to carry out a computation more 

conveniently, in differential geometry and the choice of a particular field out of the 

many fields associated with a given net. For this and other reasons, those who work in 

mathematical QFT consider nets of observable algebras to be more intrinsic than the 

associated quantum fields, which are used primarily for computational convenience.  

 

Associated to any Wightman system  , , ,U   is a net of *-algebras   , 

4 . Because all field operators have the common, dense domain  , arbitrary 

―polynomials‖ of field operators can be formed on .    denotes the algebra 

formed by all polynomials (in the sense of functions of infinitely many variables) in 

which the supports of all test functions of all field operators entering into the 

polynomial are contained in the spacetime region . The algebras    are not C*-

algebras but satisfy all of the other HAK axioms. Despite the non-intrinsic nature of 

such algebras and despite the technical disadvantages of working with *-algebras 

instead of with C*-algebras, mathematical quantum field theorists find it convenient for 

various purposes to work with such nets or with similar nets of non-C*-algebras.  

 

The goal of constructive QFT, as is it usually understood, is to construct in a 

mathematically rigorous manner physically relevant quantum field models which satisfy 
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one of these systems of axioms and then to study their mathematical properties with an 

emphasis on those properties which can be shown to have physical relevance. This 

article briefly describes such models and the means by which they were constructed and 

is organized both historically and by the construction techniques employed.  

 

As pointed out independently by Borchers and Uhlmann, the Wightman axioms can be 

understood in a representation independent manner in terms of what is now called the 

Borchers (or Borchers–Uhlmann) algebra — a tensor algebra constructed out of the test 

function space  4  with operations directly motivated by the Wightman axioms. 

Borchers algebras have been extensively studied from the point of view of QFT, 

especially by Borchers, Uhlmann, Yngvason and Lassner (see e.g. Horuzhy (1986) for 

definitions and references). A Wightman system can be thought of as a concrete 

representation of the Borchers algebra, and for a time there was hope one could arrive at 

quantum field models by defining suitable states on the Borchers algebra and employing 

the standard GNS construction to obtain the corresponding representation. However, it 

proved to be too difficult to conjure such states. 

 

The first quantum field models constructed were the free quantum fields, the Wick 

powers of such free fields and the so–called generalized free fields. These models have 

been constructed using a variety of techniques and have been shown to satisfy the two 

axiom systems discussed above; a recent construction of free fields which is of 

particular conceptual interest is briefly described in Section 6. The Hilbert space upon 

which such fields act is called the Fock space. Common to these models is the fact that 

their S–matrix, the object which describes the scattering behavior of the ―particles‖ 

described by such fields (cf. Jost 1965, Araki (1999)), is just the identity map.  

 

We turn now to models with nontrivial S–matrices, i.e. interacting quantum field 

models. When referring to the models, we employ the standard notation dM , which 

means quantum model M  in d  spacetime dimensions. Because the mathematical and 

conceptual difficulties inherent in the construction of quantum field models are quite 

daunting, constructive quantum field theorists proceeded by considering increasingly 

challenging models; this often entailed starting the study of the model M  with 2d  , 

then 3d  , and finally 4d  . At this point in time only a few models have been 

constructed in four spacetime dimensions. In this respect, the reader is referred to 

Section 8 for a few words about the outlook for CQFT after nearly fifty years of 

strenuous effort. The reader should note that all results discussed in this chapter, unless 

explicitly stated otherwise, are proven according to the criteria accepted by 

mathematicians and not merely on the basis of the plausibility arguments accepted by 

most physicists as ―proof‖.  

 

2. Algebraic Constructions I 

 

Preceded by the 1965 dissertations of Jaffe and Lanford, the first constructions of 

interacting quantum fields were carried out in the late 1960’s and early 1970’s. In this 

early work the real time models were constructed directly using operator algebras and 

functional analysis as the primary tools. Due to Haag’s Theorem, it was known that the 

Hilbert space in which these interacting quantum fields would be defined could not be 
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Fock space. However, because Fock space was the sole available starting point at that 

time, ―cutoffs‖ were placed on the interacting theories so that they could be realized on 

Fock space in a mathematically meaningful manner. These cutoffs were of two general 

kinds — finite volume cutoffs and ultraviolet cutoffs — each addressing independent 

sources of the divergences known in QFT since early in its development. Guided by 

heuristic QFT’s division of Lagrangian quantum field models into superrenormalizable, 

renormalizable and nonrenormalizable models (this classification is based upon the 

perturbation theory associated by Feynman and others with interacting fields, viewed as 

perturbations of free fields), the constructive quantum field theorists began with the 

simplest category, the superrenormalizable models. To be able to address the infinite 

volume divergence without wrestling simultaneously with the ultraviolet divergence, 

constructive quantum field theorists first considered self-interacting bosonic quantum 

field models in two spacetime dimensions.  

 

We begin with Glimm and Jaffe’s construction of the  4

2
  model, the self-interacting 

scalar Bose field on two dimensional Minkowski space with Lagrangian self-interaction 
4 , where   is the coupling constant. Let 0  be the Fock space for a (free) scalar 

hermitian Bose field  ,t x  of mass 0m   (   2,t x  ). Let    , ,t x t x t     be 

the canonically conjugate momentum field and 0  be the dense set of finite-

particle vectors in 0 . Then, for every f  in a dense subspace    of  2L , the 

operator      0 0,f x f x dx    is essentially self-adjoint on  and  0 f   

(similarly for  0 f ). These operators satisfy the canonical commutation relations 

(CCR) on :  

 

       0 0 0 0 ,f g g f i f g       , 

 

               0 0 0 0 0 0 0 00f g g f f g g f           , 

 

for all  ,f g , where ,     is the inner product on  2L  and  is the identity 

operator on . When exponentiated using the spectral calculus, (the closures of) these 

operators provide a Weyl representation of the CCR. For each bounded open subset 

O , denote by  O  the von Neumann algebra generated by the Weyl unitaries  

 
        0 0, , supp

i f i f
e e f f
 

 O , 

 

 supp f  denotes the support of the function f .) 

 

The total energy  

 

      2 2 22
0

1
: 0, 0, 0, :

2
H x x m x dx      
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of the free field is a positive quadratic form on   and therefore determines 

uniquely a positive self-adjoint operator, which we also denote by 0H . The double 

colons indicate that the expression between them is Wick ordered, which is a physically 

motivated way to define in a rigorous manner a product of operator valued distributions. 

In this case, the Wick ordering is performed with respect to the Fock vacuum. With 

 2g L  nonnegative of compact support, Glimm and Jaffe showed that, for each 

0  , the cut-off interacting Hamilton operator  

 

     
4

0 : 0, :H g H x g x dx     

 

is essentially self-adjoint on  (without the cutoff g , the interacting Hamilton operator 

is not densely defined in Fock space) and its self-adjoint closure, also denoted by 

 H g , is bounded from below. By adding a suitable multiple of the identity we may 

take 0 to be the minimum of its spectrum. Then, they proved that 0 is a simple 

eigenvalue of  H g  with normalized eigenvector   0g  . 

 

For any t , let tO  denote the subset of  consisting of all points with distance less 

than t  to O . By choosing the cutoff function g  to be equal to 1 on tO , then for any 

 A O  the operator  

 

     itH g itH g

t A e Ae


  

 

is independent of g  and is contained in  tO . For any bounded open 
2  and 

t , let     ,t x t x  O  be the time t  slice of . We define    to be 

the von Neumann algebra generated by    s s s O . One can then show that the 

algebra    coincides with the von Neumann algebra generated by bounded 

functions of the self-adjoint field operators    , ,t x f t x dxdt , with test functions 

 ,f t x  having support in . Finally, we let  denote the closure in the operator norm 

of the union  O  over all open bounded 
2 . Hence, t  is an automorphism on 

 and implements the time evolution associated with the interacting field. Similarly, 

―locally correct‖ generators for the Lorentz boosts and the spatial translations can be 

defined, resulting in an automorphic action   on  of the entire (identity component 

of the) Poincaré group 
  in two spacetime dimensions.  

 

For each A , we set      ,g A g A g     ( ,     denotes here the inner 

product on ) to define the locally correct vacuum state g  of the interacting field. 

Taking a limit as the cutoff function g  approaches the constant function 1, Glimm and 
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Jaffe showed that    g A A  , for each A , defines a new (locally normal) 

state   on  which is Poincaré invariant, i.e.       ,x
A A  


  for all 

 , x 
   and all A . Employing the GNS construction, one then obtains a new 

Hilbert space , a representation   of  as a *C -algebra acting on , and a vector 

  such that     is dense in  and  

 

   , , for allA A A     

 

In addition, one obtains a strongly continuous unitary representation U  of the Poincaré 

group in two spacetime dimensions under which the algebras     transform 

covariantly, i.e.  

 

           
1

, ,U x U x x 


     . 

 

Both the HAK and Wightman axioms have been verified for this model.  

 

The generators of the strongly continuous Abelian unitary groups 
   it f

e t


   and 

   it f
e t


   satisfy the CCR. However, this representation of the CCR in  is 

not unitarily equivalent to the initial representation in Fock space, in accordance with 

Haag’s Theorem. Indeed, by taking different values of the coupling constant   in the 

above construction, one obtains an uncountably infinite family of mutually inequivalent 

representations of the CCR. 

 

It is in this representation  ,  that the field equations for this model find a 

mathematically satisfactory interpretation, as shown by Schrader. And it is to the 

physically significant quantities in this representation that the corresponding 

perturbation series in   is asymptotic — see below for further discussion. For this and 

other reasons,   is interpreted as the exact vacuum state in the interacting theory 

corresponding to the Lagrangian interaction 4 , and the folium of states associated 

with this representation contains the physically admissible states of the interacting 

theory. Many further properties of physical relevance have been proven for this model 

more recently — see the discussion below in Section 1.  

 

The results attained for the 4
2  model were subsequently extended by Glimm and Jaffe 

to  
2

P   models (using a periodic box cutoff), where  P   is any polynomial bounded 

from below. If  P   is not bounded from below, then the corresponding cutoff 

Hamiltonian  H g  is not bounded from below and the resulting model is not stable. 

(See Glimm and Jaffe (1987) for more complete references and history of this 

development.) Hoegh-Krohn employed the techniques of Glimm and Jaffe to construct 
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models in two spacetime dimensions (with similar results) in which the polynomial 

interaction  P   is replaced by a function of exponential type, the simplest example 

being e .  

 

Analogous results were proven for 2Y , the Yukawa model in two spacetime dimensions 

by Glimm and Jaffe and Schrader. In this model one commences with the direct product 

0 b f   of the Fock space b  for a scalar hermitian Bose field  ,t x  of mass 

b 0m   and the Fock space f  for a Fermi field  ,t x  of mass f 0m  . In this model 

the free Hamiltonian 0H  is the total energy operator of the free fields   and  . 

Because there is still an ultraviolet divergence remaining after Wick ordering, the cutoff 

interacting Hamiltonian is      0, , ,IH g H H g c g     , where  ,IH g   is the 

result of applying a certain multiplicative ultraviolet cutoff (which is removed in the 

limit   ) to the formal expression  

 

       0, : : 0,IH g g x x x dx    , 

 

and  ,c g   is a (finite) renormalization counterterm determined by second-order 

perturbation theory which diverges as    and includes both a mass and vacuum 

energy renormalization. With both volume and ultraviolet cutoffs in place,  ,H g   is a 

well defined operator on 0 . Glimm and Jaffe show that as    the operator 

 ,H g   converges in the sense of graphs to a positive self-adjoint operator  H g  with 

an eigenvector   0g   of lowest energy 0. Once again, they control the limit as 

1g   of the expectations  g A  for all b fA   and obtain a state   on b f  

that provides a corresponding (GNS) representation of the fully interacting theory. 

Glimm and Jaffe also prove that the Yukawa field equations are satisfied by the fields in 

that representation. A similar argument was applied to the  2 2
Y P   model by 

Schrader, where  

            0, : : 0, : : 0,IH g g x x x P x dx      

 

and  P   is any polynomial bounded from below. The axioms of HAK and Wightman 

were shown to hold in these models, at least for all sufficiently small values of the 

coupling constant  . In addition, by using a mixture of algebraic and Euclidean 

methods Summers showed that the model manifests further properties of physical 

relevance, such as the funnel property (also known as the split property) and all 

assumptions of the Doplicher–Haag–Roberts superselection theory (cf. Araki (1999) 

and Haag (1992)). Therefore the model also admits the physically expected Poincaré 

covariant, positive energy, charged representations associated with the generator of the 

global gauge group of the model, which are mutually unitarily inequivalent.  
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Along the lines employed in the construction of the Yukawa model in two spacetime 

dimensions, Glimm and Jaffe also showed for the 4
3  model that the spatially cutoff 

Hamiltonian  H g  is densely defined, symmetric and bounded below by a constant 

 E g  proportional to the volume of the support of g . The renormalization constants in 

the Hamiltonian  H g  are again given by perturbation theory and involve counterterms 

to the vacuum energy and the rest mass of a single particle. The proof was technically 

more challenging than that for 2Y , even though the results were more limited to a 

significant extent. There was real motivation to find an alternative approach, as 

described in the next section.  

 

However, before proceeding to the next section we mention the Federbush model, a 

model of self-interacting fermions in two spacetime dimensions. First proposed by 

Federbush, the Lagrangian of the model is  

 

   1 1

1

2s s

s

m s J J 
   



   , 

 

where 10 01 1   , 00 11 0  , s s sJ      and   0m s  , 1s   . Without cutoffs 

of any kind, a concrete realization of the Federbush model can be given in terms of 

certain exponential expressions on a suitable Fock space, and Ruijsenaars proved that 

this realization satisfies the Wightman axioms when  1 1
2 2

,   (Einstein causality is 

actually verified only for sufficiently small  ). Of particular interest, he proved that the 

associated Haag–Ruelle scattering theory is asymptotically complete. The S–matrix is 

nontrivial, but there is no particle production. The Federbush model was the first non-

superrenormalizable model for which any of these properties have been proven.  

- 

- 

- 
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