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Summary 
 
Neutron radiography (NR), an advanced technique for non-destructive materials testing, 
utilizes transmission of radiation to obtain visual information on the structure and/or 
inner processes of a given object. Over the last two decades there has been considerable 
development of NR techniques, and these techniques have found more and more 
applications. Moreover, the demand for high level technology in materials research and 
in industry augurs increasing interest in the immediate future. An overview is given on 
the principle of NR, on various types of neutron sources, on imaging techniques, on 
instrumentation and on several recent applications.  
 
1. Introduction 
 
Non-destructive testing (NDT) is in widespread use in industrial R&D as well as in 
research laboratories. The most widely used NDT techniques are ultrasonic inspection, 
acoustic emission, vibration diagnostics, eddy current inspection, X-ray radiography, 
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and leak detection. Neutron radiography (NR) has a special role because of the need for 
high intensity neutron sources; such sources are generally provided by a research reactor 
or, in special applications, portable sources (252Cf-isotope or accelerator based neutron 
source). In view of this, NR cannot routinely be used in industry although it provides 
useful and unique information in several fields by providing a visual image showing the 
inner structure and processes of a given object transmitted by neutrons. NR provides 
complementary or even completely original information in relation to X-ray or gamma 
radiography because the interaction of neutrons with material is fundamentally different 
from X-ray or gamma radiation.  
 
As long ago as 1938-1944 neutron radiographs had been already been obtained by using 
Ra-Be source, and by means of an accelerator neutron source. However, it was not until 
1950-1960 that they became routinely used. The nuclear industry used NR for testing 
fuel elements and control rods of atom reactors and routine industrial inspections were 
performed on turbine blades.  
 
Over the two last decades there has been a considerable development of NR and such 
techniques are increasingly used because of the demand for high level technology in 
materials research and in industry. NR is employed in a wide range of investigations, 
including: 
• routine test measurements in quality control, e.g. nuclear fuel rods, pyrotechnical 

materials, turbine blades, corrosion of aircraft, inspection of honeycomb structures 
in rotor blades; 

• materials science and R&D of industrial products, e.g. environmentally friendly 
materials (freon-R134a), heat tubes, oil flow in gas turbine engines and components, 
refrigerator and compressor systems; 

• hydrogen diffusion in metals, oil infiltration in petrophysical model systems, 
thermodynamic properties of two-phase systems; 

• investigation of works of art (paintings and ancient sculptures); 
• biological and plant physiological research, e.g. root growth, distribution of water 

and heavy metals in plants. 
 
The article surveys the principle of NR including neutron sources, imaging techniques 
and several recent applications.  
 
2. Principle of Neutron Radiography 
 
Neutron radiography utilizes transmission of radiation to obtain information on the 
structure and/or inner processes of a given object. The basic principle of NR is very 
simple. The object under examination is placed in the path of the incident radiation, and 
the transmitted radiation is detected by a two-dimensional imaging system, as is 
illustrated in Figure 1. The NR arrangement consists of a neutron source, a pin-hole type 
collimator which forms the beam, and a detecting system which registers the transmitted 
image of the investigated object. The most important characteristic technical parameter 
of an NR facility is the collimation ratio L/D, where L is the distance between the 
incident aperture of the collimator and the imaging plane, D is the diameter of the 
aperture. This important parameter describes the beam collimation and will limit the 
obtainable spatial resolution by the inherent blurring independently from the properties 
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of the imaging system. This unsharpness Ubeam can be related to the distance between 
the object and the detector plane l2 and to the L/D ratio: 
 

beam /
slU

L D
=  (1) 

 

 
Figure 1. General principle of radiography 

 
Two opposing demands have to be taken into consideration when planning a 
radiography arrangement: if L/D is large then the neutron flux ΦNR at the imaging plane 
is relatively weak but the geometrical sharpness is high, and vice versa. The basic 
relation for ΦNR is  
 

216( / )
s

NR
L D
Φ

Φ =  (2) 

 
where Φs is the incident neutron flux. 
 
In radiography imaging the attenuation coefficient μ is a crucial parameter. The 
transmitted intensity of the radiation, I, passing through a sample with an average 
transmission of μ can be written as 
 

h
oI I e μ−=  (3) 

 
where Io is the incident intensity and h is the thickness of the sample. If there is any 
inclusion (inhomogeneity, inner structure) in the sample of thickness x and transmission 
μx then the transmitted intensity, Ix, is given as 
 

( ) xh x x
x oI I e μ μ− − −=  (4) 
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If the value of μ and μx are different from each other then the presence of the inclusion 
will provide a contrast in the radiography image.  
 
The attenuation coefficient vs. atomic number is plotted in Figure 2 for neutron 
radiation and for gamma- and X-rays. Its value depends on both the coherent and 
incoherent scattering and on the absorption properties of the element(s). For neutrons, μ 
does not show any regularity as a function of atomic number, and for some of the 
lightest elements (H, B, Li) the attenuation coefficient is by two orders of magnitude 
greater than the corresponding parameter for most of the technically important elements, 
such as Al, Si, Mg, Fe, Cr. This fact is of practical importance, viz. neutrons penetrate 
almost all metals used for construction purposes with little loss in intensity; in contrast 
they are considerably attenuated in passing through materials containing hydrogen, such 
as water, oil or several types of synthetics. On the other hand in the case of X-ray and 
gamma radiation, this dependence may be characterized by more or less continuously 
increasing curves. This means that the radiation is absorbed to a great extent by heavy 
elements whereas it penetrates light materials such as hydrogen without significant loss 
in intensity.  

 
Figure 2. Attenuation coefficient (note the logarithmic scale) of elements for neutrons 
(separate dots), for 1 MeV gamma-ray (dotted line), for 150 keV X-ray (solid line) and 

for 60 keV X-ray (dashed line). 
 
These differences for various radiations provide the possibility to gain complementary 
information by using all three types of radiation together. 
 
3. Neutron Sources 
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The energy spectrum of neutrons in thermal equilibrium with a moderator at 
temperature T approximates Maxwell-distribution 
 

2( ) exp( / )
( )

EE dE A E kT dE
kT

Φ = −  (5) 

where Φ(E) is the flux per energy interval dE, A is a constant, k equals the Boltzmann 
constant, and T is the absolute temperature. The following terminology is used in NR: 
 
Fast neutrons: 10 keV − 20 MeV 
Epithermal neutrons: 0.3 eV − 10 keV 
Thermal neutrons: 0.005 eV − 0.3 keV 
Cold (subthermal) neutrons: < 0.005 eV. 
 
Most NR investigations are carried out with thermal (and epithermal) neutrons obtained 
from research reactors. However, a number of important applications need cold 
neutrons. The energy of cold neutrons is smaller than the Bragg cut-off energy of 
metallic components. In such cases Bragg scattering is absent and, for example, the 
hydrogen (or boron) content of the sample gives greater contrast with respect to the 
metal components than for thermal neutrons.  
 
The great advantage of reactor facilities is the high flux and the available infrastructure, 
which is needed to cover the multipurpose use of reactors. Accelerator sources provide 
smaller flux but their great advantage is their portability. Furthermore, their "switch-
on"/"switch-off" mode is especially advantageous in industrial use; moreover, there is 
no problem with burnt out fuel elements. The need for mobile NR equipments comes 
mainly from aerospace applications, such as inspection of airplane structures for 
corrosion early detection or inspection of turbine blades. This is the reason for such 
great efforts being made over the last 20 years to developing and producing a new 
generation of portable, accelerator based neutron sources ("DIANA" in Europe, 
superconducting cyclotron in the UK, proton linear accelerator in the USA). 
Radioisotopes (252Cf isotope) are the simplest sources but their lifetime is rather limited 
and their neutron flux is lower than the other sources. 
 
4. Imaging Techniques 
 
In that neutrons are neutral particles a converter material - in NR generally a foil − is 
used to convert neutrons to another type of radiation, to enable them to be detected 
directly. Various detector systems are employed in NR: combinations of film and 
neutron sensitive converter foil, combinations of a light-emitting scintillator screen with 
a CCD camera and, more recently, imaging plates. Depending on the object to be 
investigated and the task to be solved, two basic types of NR are in use: static 
radiography and dynamic radiography (real-time). Both techniques provide averaged 
information on the investigated object in its depth. Neutron computer tomography 
(NCT) is a rapidly developing technique that provides information on the three-
dimensional structure of a given object.  
(a) Static NR records a static picture of the object to be investigated. Even nowadays, 

film techniques are the most widely used. The information is not a priori obtained in 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PHYSICAL METHODS, INSTRUMENTS AND MEASUREMENTS – Vol. IV - Non-destructive Testing: Neutron Radiography - 
Erzsebet Svab, Marton Balasko 

©Encyclopedia of Life Support Systems (EOLSS) 

digital form, but may be digitized with a scanner or densitometer. The most recent 
developments are the imaging plate (IP) system and the camera-based technique, 
both of which are now being used to a much greater extent.  

 
The IP is a new film-like radiation image sensor based on photo-stimulated 
luminescence. It consists of a specifically designed composite structure that traps 
and stores the radiation energy. A polyester support film is uniformly coated with a 
photo-stimulatable luminescent material - barium fluorobromide containing a trace 
amount of Eu2+ as a luminescence centre (BaFBr:Eu2+) − and it is then coated with a 
thin protective layer. The stored energy is stable until scanned with a laser beam 
whereupon the energy is released as luminescence. In the case of neutron sensitive 
IP the storage luminescent material is mixed with gadolinium oxide.  
 
The camera-based system consists of a scintillator plate and either a low-light-level 
(LLL) video or CCD camera which records the light emitted by the scintillator. The 
images recorded by a CCD camera are inherently digital, while those of a video 
camera can be recorded by video recorder or can optionally be digitized by a frame-
grabber. In static radiography the images recorded by the camera are integrated, and 
thus a static picture of good statistics may be obtained from the object.  

 
(b) Dynamic (real-time) NR is used to investigate movements inside the investigated 

object (flow of fluids in metal tubes, evaporation or condensation processes, two-
phase systems). The imaging system consists of a scintillator plate that converts the 
neutrons into light which is detected by an LLL video camera with short imaging 
cycle or by a CCD camera. The individual images are registered and analyzed on a 
time scale, they may be visualized on a monitor and recorded by a video recorder or 
by a computer. Compared with static NR this technique needs a relatively high 
neutron flux density: at least 106 n cm-2 sec-1. 

 
The characteristic features of static and dynamic (real-time) NR imaging techniques 
are surveyed in Figure 3. 

 
(c) Neutron computer tomography (NCT) offers the unique capability of displaying 

cross-sectional slices of the samples with high resolution, and produces data which 
are easily adaptable for 3D representation. Although tomographic techniques have 
been well known since the beginning of the 1970s in the field of diagnostic 
medicine, their initial application in the neutron field was limited by the available 
neutron detectors. Recently this problem has been overcome by the development 
(and available cost) of CCD cameras. A scintillator converts the transmitted neutron 
beam to a visible light pattern, and each pixel of the CCD camera acts as an 
equivalent neutron detector, as it visualizes only a very narrow area of the 
scintillating screen. If one rotates the sample, the NR images are recorded in several 
positions and the use of suitable software enables the 3D image of the object to be 
reconstructed.  
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Figure 3. Characteristic features of neutron radiography imaging systems. 
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