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Summary 
 
A review of ultrashort laser pulses use in various scientific areas is presented. Physical 
principles of the generation of ultrashort pulses of light and superhigh light fields, 
methods for measuring their duration, uses of femtosecond laser pulses in chemistry 
and optical spectroscopy, control of the amplitude and phase of molecular pulses with 
the help of femtosecond laser pulses are considered. Some applications of femtosecond 
lasers in physics and chemistry, as well as in technology, biology and medicine are 
discussed.  
 
1. Introduction  
 
From the outset of lasers it was aspiration to receive their radiation in the form of 
pulses with minimum possible duration. This aspiration was based by the following 
circumstances. 
  
First, radiation with rather small energy, being, concentrated in a short time interval, 
allows to receive considerable peak power, and intensity of light at focusing of a laser 
bunch. This is all-important for researches of interaction of radiation with matter. Such 
new areas of physics as nonlinear optics and studying of superdense high-temperature 
plasma had the development in many respects thanks to successes in the field of 
generation of powerful intensive pulses of laser radiation.  
 
Secondly, decreasing of duration of light pulses raises the time resolution of methods 
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of research of the fast phenomena. Many phenomena concerning a microcosm of atoms 
and molecules include the processes with characteristic times of picosecond and 
femtosecond duration range. Generation of laser radiation in the form of pulses of such 
duration gives basic possibility "to freeze" picture of evolution of ultrafast process, 
otherwise, to receive "an instant photo" at a given time. The technique "pump-probe" 
used is stroboscopic, inherently. As a result of impact by the short pulse the 
investigated object is excited, and then by means of delayed for a certain time-interval 
pulse the information on changes, occurring in this interval, turns out. Changing 
sequentially the delay time, it is possible to track changes of the object in time after the 
excitation moment. Obviously, the shorter the pulse, the more fine changes in time can 
be investigated. 
 
During development of quantum electronics tremendous successes in the field of 
generation of ultrashort pulses of laser radiation have been reached. Some indicator of 
this progress is that fact that into use of researchers began to enter successively 
nanoseconds (10-9s), picoseconds (10-12s), femtoseconds (10-15s), and recently began to 
use attoseconds (10-18s). Precisely the same has occurred with laser, which power may 
run into megawatts (106 W), Gigawatts (109 W), Terawatts (1012 W) and, now, 
pettawatts (1015 W). 
 
By 1998 the long way of reduction of time scales light pulses has been passed 
practically up to the end: pulses with duration p 4.5τ = fs in a visible range (only two 

periods light pulses) and p 40τ =  fs on length of wave of the СО2 laser (10 microns) – 
light pulse with one period of pulses – are received! One period of optical oscillation is 
a limiting duration of a light pulse, but simultaneously and limiting "speed" of optical 
response of the matter. That is why, not without reason, development of femtosecond 
lasers is compared with the invention of a microscope. 
 
On the other hand, transition to femtosecond pulses is also next jump on a scale of 
intensity of light. At duration of a pulse 100τ =  fs rather small energy 0.1W =  J 
corresponds to a power Р=1012 W. Thus, in rather modest systems on scales it is 
possible to pass to the power levels, which else more recently it was possible to receive 
only in multi-kilo-joule installations, devoted for controlled thermonuclear synthesis.  
 
Thus, absolutely new experimental possibilities were appeared in nonlinear optics. In 
the field of focused femtosecond pulses the intensity of light of 1021 W/cm2 is received 
and, as a consequence, intensity of a light field reaches 5•1011 V/cm. So, we reach the 
fields exceeding intra-atomic ( 9

a 5 10Е = × V/cm for hydrogen atom). In so high light 
fields new problems of nonlinear electronic physics can be investigated and become a 
reality for direct experiments in which it is possible to observe the effects predicted by 
nonlinear quantum electrodynamics (nonlinear scattering of light on relativistic 
electrons, scattering of light on light in vacuum, etc.)  
 
With the help of femtolasers a large body of researches is now performed in physics, 
chemistry, biology, technology, modern electronics etc. The substantial repertoire of 
laser radiation – its coherence, range of intensity and frequency, controllability of focal 
area and of beam length – has been comprehensively explored in the contexts of micro- 
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and macro-diagnostics of cells, biochemical kinetics, therapy and surgery. 
 
2. Generation of Ultrashort Light Pulses  
 
To obtain extremely short light pulses one uses a phasing principle of spectral 
components of light. Phasing of spectral components allows to truncate simultaneously 
a light pulse and sharply to increase its peak power. The limit of duration of a pulse is 
established by spectral width of light min 2 /t π ωΔ = Δ . Apparently, from this formula, 
to receive extremely short light pulses (with only a few periods of light pulses), it is 
necessary to have the radiation which spectral width is of about carrying frequency. 
 
Though basically it is possible to offer ways of phasing of components in the spectrum 
of non-laser light source, such approach appears rather difficult and energetically 
unprofitable. Therefore initial broadband radiation, phasing of which components leads 
to generation of short pulses, is usually obtained at self-interactions of laser pulses in 
nonlinear medium. In this case it is a question of a regular broadband light packet in 
which it is necessary to change phase relations.  
 
Figure 1 illustrates one of the most effective version of this technique — a compression 
of the phase-modulated pulse. The fast phase modulation that expands the spectrum 
turns out here due to the self-influence of the initial pulse in the substance with cubic 
nonlinearity. Phasing of spectral components and consequently also pulse compression 
is carried out in dispersed delay lines (pair of diffraction lattices).  
 

 
 

Figure 1. The principle of generation of extremely short light pulses: fast phase 
modulation and compression. 

 
A principle of operation of the scheme shown on Figure 1 is possible to explain on the 
basis of spectral representations (phasing of spectral components, synchronization of 
modes), as well as directly considering transformation of the envelope of a pulse, i.e. 
on time language. The compression in this scheme should be treated as a result of 
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"catch up" in dispersion lines of the delay of low-frequency spectral components, 
settling down at the front of pulse, by high-frequency components, originally grouped 
on its tail. It is necessary to notice that discussed principles have deep analogies in 
classical optics of wave bunches. So, the problem of generation of a train of short 
pulses due to superposition of the synchronized discrete modes analogously to a 
classical problem of diffraction of a plane wave on an amplitude lattice. Compression 
of the phase-modulated signal by a dispersive element (by optical compressor) is a 
temporal analogue of spatial focusing of a bunch by means of a lens. 
 
In all these situations the main point — control of the phase of light wave. The control 
of a phase in space the optics has mastered, in essence, in the XIX century. Fast control 
of a phase in time, that is necessary for generation of extremely short pulses, was the 
achievement in last decades of XX century. For its realization it is necessary to have, 
obviously, systems with quickly changed in time parameters. In the limit, it is a 
question of changes in a time of an order of the period of light pulses, the most 
perspective way of the decision of the problem is the control of light wave itself based 
on use of fast optical nonlinearity.  
 
Let consider the elementary theory of the optical compressor. Action of compressor is 
based on use of nonlinearity of the refraction index of an optical fiber. The light pulse 
of kind  
 

( )cos  —  ,      /Е t kz k n cω ω= = ,       (1) 
 
propagated in the medium with a nonlinear refraction index 
 

0 2n n n I= + ,          (2) 
 
and undergoes phase self-modulation. Really, total phase gain got by a pulse on a 
distance z,  
 

0 2/ /kz n z c n Iz cϕ ω ω= = + .        (3) 
 
As intensity of light depends on time, i.e. ( )I I t= , there is a time-dependent nonlinear 
additive to a phase  
 
 ( ) 2 /t n Iz cωΦ =          (4) 
 
 and also consequently the time-dependent additive to frequency 
 

( ) 2
It n z

t c t
ωω ∂Φ ∂

Δ = =
∂ ∂

.        (5) 

 
Expansion of a frequency spectrum of the pulse, arising owing to self-modulation, it is 
possible to estimate as  
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ωω

τ
Δ =           (6) 

 
where 0τ  — duration of a pulse, 0I  — peak intensity. So, the frequency spectrum of a 
pulse strongly extends. Sending the self-modulated pulse into dispersive substance, it is 
possible to compress a pulse up to duration  
 

min 0
2 0

2 ,t
n I z

π λτ
ω

Δ = =
Δ

        (7) 

 
where λ  — wavelength of a light .  
 
To obtain pulse width, comparable with the period of optical oscillations, a range of 
scanning of frequency ωΔ  should be comparable with bearing frequency ω . Real way 
of obtaining necessary frequency modulation is phase self-modulation of light in the 
substance with almost no inertial nonlinearity (electron Kerr-effect). Non-inertia of 
nonlinear response, as a rule, is connected with smallness of the nonlinear additive to a 
refraction index 2 n , therefore the large lengths z of interaction are necessary. As a 
suitable substance for producing phase self-modulation an optical fiber-guide have 
been appeared.  
 

 
 

Figure 2. The scheme of the compressor of light pulses on the basis of an optical fiber. 
 

The practical scheme of a compression of light pulses in which phase self-modulation 
of light in an optical fiber-guide is used, is shown on Figure 2. In the fiber-optical 
compressor a useful role play dispersive properties of an optical fiber. The dispersion 
of a group velocity of light in an optical fiber leads to that various spectral components 
of light are separated in time, namely, carrying frequency is increased from the 
beginning to the its end (a fiber dispersion is supposed normal). On other words, the 
pulse gets linear frequency modulation (see Figure 3). If now to pass it through the 
device, which high-frequency components of a field pass faster than low-frequency 
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(analogue of a medium with an abnormal dispersion), it is possible to combine all 
spectral components in time and to receive very short pulse of light.  

 

 
 

Figure 3. Frequency-modulated pulse. 
 
The necessary element, possessing an abnormal dispersion, is based on dispersive 
prisms or diffraction lattices. From the equation of diffraction lattice sind mθ λ=  is 
seen that light with long wavelengths are deflected by the lattice on large angles, rather 
than the small. It gives the chance to construct by means of two lattices the scheme in 
which long light waves take place longer ways than short and, hence, get a demanded 
time delay.  
 
Notice that in presented on Figure 2 pair of lattices the unwanted effect occurs — 
spatial (transverse) shift of high-frequency and low-frequency field components. The 
specified lack it is possible to eliminate by use of the mirror returning radiation back to 
lattice pair (see Figure 4). After double pass spatial displacement of frequency 
components is compensated. The phase plate (transparent) serves for additional 
correction of delays of spectral components. Will notice that strongly dispersive 
systems – combination of diffraction lattices or prisms – allow to expend a frequency 
spectrum of light in space and to operate amplitudes and phases of frequency 
components of the spectrum, and it is absolutely similar to, how it was done by Abbe 
with Fourier-components of an angular spectrum. 
 

 
Figure 4. The scheme of the two-through passage optical compressor on diffraction 

lattice: PТ — the transparent phase-shifter. 
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It is necessary to note that in middle 90th there was a break in technique of generation 
of ultrashort light pulses. The new crystals, capable to generate laser radiation with 
very wide amplification band, have been created: titan-sapphire (with amplification 
bandwidth 3500 cm-1), chrome-forsterit and others. The phenomenon of self-
synchronization of modes has been discovered. It became possible in titan-sapphire 
laser to realize intra-resonant compression: phase self-modulation of the pulse is 
carried out directly in the active element of the laser (for the account Kerr 
nonlinearity), but compression with the help of pair of glass prisms or the multilayered 
dielectric mirror possessing negative dispersion of a group delay (depth of penetration 
of light in such mirror depends on the wavelength). Lasers of this kind are pumped up 
by continuous radiation of the argon laser or the second harmonic of the laser on 
neodymium garnet. The titan-sapphire laser is very compact (the length of a crystal of 
an order of millimeter), is easily transferred into regime self-synchronization of modes 
and it generates pulses with duration 10 fs and energy of an order of nano-joules on 
wavelength 800 nanometers. Methods of amplification and transformation of frequency 
of such pulses are well developed.  
 
The quest for faster and faster time-resolved measurements has reached recently (2007) 
a new level. A.L. Cavalieri with colleagues reported that they have measured a delay of 
100 attoseconds in the emission of electrons ejected from a surface irradiated by light. 
This is not just the experiment with the best time resolution yet: it is also the first time 
that attosecond metrology has been applied to a solid, rather than a gaseous, system. 
Attosecond pulses are created when intense laser pulses of femtosecond duration are 
focused into a gas sample. A process known as high-harmonic generation then kicks in 
to produce light at a range of frequencies that are precisely phased together, creating a 
train of very short, coherent pulses. 
 
A.L. Cavalieri et al. focused their 90-electronvolt extreme ultraviolet pulse at an angle 
on a tungsten metal surface. The lower-frequency optical pulse that created the 
attosecond pulse follows along the same path, but its passage can be delayed in steps of 
300 attoseconds. Electrons liberated through the photoelectric effect by the first pulse 
are detected by a spectrometer that measures their kinetic energy. The optical laser 
field pushes these photoelectrons’ energy up or down, depending on the precise 
position of both the attosecond pulse and the photoelectron in the laser field’s cycle. By 
varying the time delay between the pulse and the optical field, and measuring the shift 
in the up and down motion of the energy spectrum, the authors could precisely measure 
the emission time of the photoelectrons. They were able to distinguish electrons 
coming from different energy states in the surface, observing that electrons from the 
more deeply bound core states in the surface were emitted around 100 attoseconds after 
those from the conducting band. 
 
3. Measurement of Ultrashort Pulse Duration  
 
One of the main tasks on a way of wide use of ultrashort light pulses is development of 
essentially new methods of measurement of duration with picosecond, femtosecond 
and attosecond resolution. The standard techniques of measurement, that use photo-
detectors and oscillographs, has appeared suitable only for nanosecond pulses, and to 
the aid of experiments nonlinear optical phenomena have come, which run depends on 
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intensity of a wave. To them, in particular, concern generation of the second harmonic 
and a two-photon luminescence at crossing of two light bunches. From the size of 
crossing area of bunches and a velocity of light, the duration of a pulse of radiation is 
obtained.  
 
In the two-photon method the light bunch is divided by a glass plate into two bunches 
of equal intensities (see Figure 5). These bunches after reflection from mirrors, go from 
the different sides of a ditch with organic dye. And such a dye is selected whose 
molecules are excited by two quanta of light (two-photon resonance). Excited 
molecules give up the stored energy, radiating visible light. Brightness of a 
luminescence is proportional to intensity of light pulses. As a result, in a ditch 
luminous tracks are observed which is possible to photo.  

 
Figure 5. The scheme of measurement of duration of ultrashort optical pulse 

by luminescence method in two-photon luminescence. 
 
 In crossing place of two pulses, propagated in a ditch towards each other, the intensity 
of light two times as large than the light from a single pulse, and, hence, study of 
brightness distribution along the track allows to determine duration of a light pulse. At 
registration of picosecond’s pulse a bright luminous central part has a length of an 
order of a few fractions of millimeter. 
  
For measurement femtosecond duration of pulses the correlation methods, well 
developed earlier in radio engineering, are also used. For measurement of 
autocorrelation function ( )G t  a signal ( )I t  is delayed, then this delayed signal is 
multiplied with the original signal in the nonlinear device and then integrated. It is 
widespread the scheme of the nonlinear-optical correlator where as the delay block the 
prism of total internal reflection is placed on the movable table. Multiplication of an 
optical signal occurs in the nonlinear crystal focused for non-collinear generation of the 
second harmonic. As this takes place an integrating signal of a photo-detector measures 
the autocorrelation function of intensity of the second order  
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( ) ( ) ( ) .G t I t I t dtτ
∞

−∞

= +∫        (8)  

 
As an example Figure 6 illustrates interferential autocorrelation function and spectrum 
of the 270 fs laser pulse.  
 

 
 

Figure 6. The interferential autocorrelation function (left) and the spectrum of 270 fs 
laser pulses (right). 

 
4. Femtosecond Technologies 
 
Now we will consider some applications of femtosecond light pulses. On a basis of 
femtosecond lasers high-precision technologies are successfully developed, such as 
cutting and processing of materials, and also systems of three-dimensional optical 
memory. Thus it used that circumstance that influence of femtosecond light pulse on 
substance can be strong, but simultaneously local, i.e. concentrated in very small 
volume. The specified possibility is caused, on the one hand, by smallness of the 
energy of the pulse, and, on the other hand, by high intensity of light. It is directly 
visible from the formula  
 

/I W Sτ=  ,            (9) 
 
connecting among themselves energy W  and pulse duration τ , cross-section area of 
bunch S  and intensity of light I . For example, for W = 10 μJ, τ  = 10 fs, S  = 10-7 cm2 
it is received I  = 1016 W/cm2. In a light field of such intensity nonlinear-optical 
processes effectively occur, such as two-photon absorption of light, optical breakdown, 
etc. However space area in which these processes are exhibited in the appreciable scale 
is rather small. Let estimate, for example, the size of area of condensed matter in which 
the femtosecond light pulse is capable to cause ionization of atoms. Energy of 
ionization of atom makes nearby 10 eV, or 1.6x10-18 J. The light pulse with energy 10 
μJ is capable to ionize, hence, nearby 5 x 1012 atoms. Considering that one atom has the 
volume 3x10-23 cm3 (such a volume the water molecule in a liquid phase occupies), we 
will receive volume of area of ionization 150V = μm3 that corresponds to a volume of a 
cube with length of an edge 5 microns. So, the size of area in which the focused 
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femtosecond light pulse strongly influences substance, changing its properties, actually 
can be extremely small. 
  
Experiments confirm this conclusion. Studying optical breakdown of transparent 
dielectrics in the field of focused femtosecond laser pulses shows that the linear size of 
breakdown area can be only some microns. With the same spatial resolution it is 
possible to influence on molecules in polymeric matrices, causing two-photon 
absorption of light and structural change of molecules. Last effect is taken as a 
principle in systems of three-dimensional optical memory developed now. The data 
recording density in such systems can reach 1012 bits/cm2. There are also rather 
perspective technological applications of femtosecond lasers, connected with cutting of 
materials and processing of surfaces, as we mentioned above.  
 

- 

- 
- 
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