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Summary  

 

This chapter addresses the response of structures subject to dynamic loads. The majority 

of the material presented in this chapter has been condensed and replicated from 

Tedesco et al. (1999); the reader is encouraged to refer to this for a more comprehensive 

discussion of the topics presented herein. 

 

1. Introduction 

 

In this chapter, dynamic means time varying. That is, the application and/or removal of 

the loads necessarily varies with time (Irvine, 1986). Moreover, the response (i.e., 

resulting deflections, internal stresses, etc.) of a structure resisting such loads is also 

time dependent or dynamic in nature. 

 

In reality, no loads that are applied to a structure are truly static. Since all loads must be 

applied to a structure in some particular sequence, a time variation of the force is 

inherently involved. However, whether or not a load should be considered dynamic is a 

relative matter. The most significant parameter influencing the extent of the dynamic 

effect a load has upon a structure is the natural period of vibration of the structure, T. 

Briefly stated, the natural period of vibration is the time required for the structure to go 

through one complete cycle of free vibration. If the application time for the load is large 

compared to the natural period of the structure, then there will be no dynamic effect, 

and the load can be considered static. If, on the other hand, the application time for the 

load is in close proximity to the natural period of the structure, it will induce a dynamic 

response. 

 

Situations in which dynamic loading must be considered are quite numerous. Examples 

include: the response of bridges to moving vehicles; the action of wind gusts, ocean 

waves, or blast pressures upon a structure; the effect of landing impact upon aircraft; the 

effect on a building structure whose foundation is subjected to earthquake excitation; 

and the response of structures subjected to alternating forces caused by oscillating 

machinery (Tauchert, 1974). Under these types of loading conditions, either the entire 

structure or certain components of the structure are set in motion (i.e., caused to 

vibrate). Therefore, it is necessary to apply the principles of dynamics rather than those 

of statics to evaluate the structural response. It will be demonstrated throughout this 

chapter that the maximum deflections, stresses, strains, and various other response 

quantities exhibited by a structure are generally more severe when loads of a given 

amplitude are applied dynamically rather than statically. 

 

The response of a structure to dynamic loads may be categorized as either deterministic 

or nondeterministic (Clough and Penzien, 1975). If the magnitude, point of application, 

and time variation of the loading are completely known, the loading is said to be 

prescribed, and the analysis of the structural response to this prescribed loading is 

defined as a deterministic analysis. However, if the time variation and other 

characteristics of the loading are not completely known, but can be defined only in a 

statistical sense, the loading is referred to as random, and the corresponding analysis of 

the structural response is termed nondeterministic. This chapter emphasizes the 

deterministic response of structures to prescribed dynamic loading. 
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To expedite the dynamic analysis of structures, it is convenient to classify dynamic 

loads as either periodic or nonperiodic. Periodic loadings repeat themselves at equal 

time intervals. A single time interval is called the period, 0T . The simplest form of 

periodic loading can be represented by a sine function as shown in Figure 1a. This type 

of periodic loading is referred to as simple harmonic. Another form of periodic load is 

illustrated in Figure 1b. This loading is termed periodic, nonharmonic. Most periodic 

loads may be accurately represented by summing a sufficient number of harmonic terms 

in a Fourier series. Any loading that cannot be characterized as periodic is nonperiodic. 

Nonperiodic loads range from short-duration impulsive types, such as a wind gust or a 

blast pressure (Figure 1c), to fairly long duration loads, such as an earthquake ground 

motion (Figure 1d). 
 

 
 

Figure 1. Types of dynamic loadings: simple harmonic; (b) periodic, nonharmonic; (c) 

nonperiodic, short duration; (d) nonperiodic, long duration 

 

A structural dynamics problem differs from its static counterpart in two essential aspects 

(Craig, 1981). The first and most obvious difference is the time-varying nature of the 

excitation (applied loads) and the response (resulting deflections, stresses, etc.). That is, 

both are functions of time in a structural dynamics problem. This precludes the 

existence of a single solution. The analyst must investigate the solution over a specific 

interval of time to fully evaluate the structural response. Thus, a dynamic analysis is 

inherently more computationally intensive than a static analysis. 

 

However, the most important feature differentiating a dynamic problem from the 

corresponding static problem is the occurrence of inertia forces when the loading is 

dynamically applied. Consider the vertical cantilever structure shown in Figure 2. If a 

force F  is applied statically at the tip of the cantilever, as illustrated in Figure 2a, the 

resulting shear force, V , bending moment, M , and associated stresses and deflections 

in the structure can be computed from the basic static structural analysis principles, and 

are directly proportional to the force, F . If, however, a time-varying force  F t  is 

applied to the tip of the cantilever, as illustrated in Figure 2b, the structure is set in 

motion, i.e., it vibrates and experiences accelerations. Inertia forces proportional to the 

mass then develop in the structure that must resist these forces. The significance of the 

contribution made by inertia forces to the shear force,  V t , bending moment,  M t , 

and related stresses and deflections in the structure determines whether a dynamic 

analysis is warranted. 
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Figure 2. Cantilever structure subjected to (a) a static load; (b) a dynamic load 

 

Typical of any problem in engineering mechanics, an appropriate methodology for 

conducting a dynamic structural analysis is essential to achieve a viable solution. One 

such methodology is summarized in Figure 3, which defines three basic phases of a 

dynamic analysis: (1) identification of the physical problem, (2) definition of the 

mechanical model, and (3) solution of the mechanical model. 

 

Phase 1 entails recognition of the problem as it exists in nature. This includes accurately 

identifying and describing the physical structure, or structural component, and the 

source of the dynamic loading. Phase 2 requires an interpretation of the physical 

problem into a form conducive to available analysis techniques. This involves defining 

a mechanical model that accurately represents the dynamic behavior of the physical 

problem in terms of geometry, kinematics, loading, and boundary conditions. The 

idealization of the physical problem to a mechanical model conducive to available 

analysis techniques generally involves some simplifying assumptions, which influences 

the formulation of the differential equations governing the structural response. In Phase 

3, the governing differential equations are solved to obtain the dynamic response. The 

solution is only as accurate as the representation provided by the mechanical model. 

Therefore, this step generally requires an assessment for accuracy. If the predefined 

accuracy criteria are met, the mechanical model has then been solved with a satisfactory 

level of confidence, and the analysis results can be interpreted in a meaningful manner. 

For complex structures, it may be necessary to refine the analysis by considering a more 

detailed mechanical model or to introduce design improvements for structural 

optimization, which leads to further analyses involving several iterations. 

 

The complexity of the analysis depends largely on the physical problem under 

consideration and on the mechanical model that must be employed to obtain a 

sufficiently accurate response prediction. A linear analysis can be a routine task, 

although a fully three-dimensional solution may require a significant amount of human 

effort and computing resources. On the other hand, a nonlinear dynamic analysis can 

represent a major challenge to the ingenuity of the analyst and require very significant 

resources.  
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Figure 3. Methodology for conducting a dynamic analysis 

 

Indeed, the most important step in the dynamic analysis procedure is defining a 

mechanical model that accurately represents the physical problem. Theoretically, all 

structures possess an infinite number of degrees of freedom (DOF). In other words, an 

infinite number of independent spatial coordinates are required to completely specify 

the position of all points on the structure at any instant of time (Craig, 1981). However, 

most practical analyses are conducted on mechanical models having a finite number of 

DOF. For each DOF exhibited by a structure, there exists a natural frequency (or natural 

period) of vibration. For each natural frequency, the structure vibrates in a particular 

mode of vibration. 

 

For most large, complex structures, however, it is not necessary to determine all the 

system natural frequencies, since relatively few of these vibration modes contribute 

appreciably to the dynamic response. Therefore, the mechanical model should be 

defined in such a manner that only those vibration modes that significantly contribute to 

the dynamic response are accurately represented. 
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In general, the mechanical model can be categorized as either continuous or discrete. 

The type of mechanical model employed for an analysis affects the nature of the 

governing differential equations and their subsequent solution. For a continuous model, 

the mathematical formulation of the problem results in a system of partial differential 

equations. However, for a discrete system the mathematical formulation yields a set of 

ordinary differential equations, one for each DOF. Analytical solutions for partial 

differential equations and for large systems of ordinary differential equations are quite 

cumbersome, if not impossible in many cases. Therefore, in most practical applications 

numerical solution techniques must be employed. The focus of this chapter is the 

dynamic analysis of discrete systems. 

 

2. Vibration of Single Degree of Freedom Systems 

 

2.1. Basic Concepts 

 

Vibrations are generally classified as either free vibrations or forced vibrations. Free 

vibration occurs in the absence of externally applied forces. The impetus for the free 

vibration is usually an initial displacement and/or velocity imparted to the mass. A 

system undergoing free vibration will oscillate at one or more of its natural frequencies. 

A single degree of freedom (SDOF) system has only one natural frequency. 

 

Forced vibration occurs under the excitation of externally applied forces. If the 

excitation is transient (i.e., of short duration), the system response is at its natural 

frequency (once the disturbance terminates). However, if the excitation is oscillatory 

(periodically repetitive) and continues with time, the system vibrates at the excitation 

frequency. In situations where the excitation frequency coincides with the natural 

frequency of the system, a condition known as resonance occurs. At resonance, the 

amplitude of vibration becomes extremely large, and damage to the system is imminent 

if the vibration continues at the resonant frequency. 

 

All structures exhibit some form of energy dissipation, or damping. Typically, the 

energy dissipation is due to frictional resistance or material hysteresis. In most practical 

engineering structures and mechanical systems, the damping is relatively small and, 

therefore, has very little influence on the natural frequency. However, even a small level 

of damping has a significant effect in limiting the amplitude of vibration, especially at 

resonance. 

 

This section addresses the free vibration and harmonically excited forced vibration of 

undamped and viscously damped SDOF systems.  

 

2.2. Formulation of the Equation of Motion 

 

The dynamic response of a discrete SDOF system is described by a single, second-order 

ordinary differential equation. This mathematical expression, which defines the 

dynamic equilibrium of a system, is called the equation of motion of the structure. An 

important result from the solution of the equation of motion is the displacement-time 

history of a structure subjected to a prescribed time-varying load. However, before 

establishing methodologies for formulating the equations of motion for SDOF systems, 
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it is important to define the basic components comprising the vibrating system. These 

include mass, stiffness, damping, and forcing. Damping is the energy loss mechanism, 

and forcing is the source of excitation. 

 

The mechanical model for a simple SDOF vibrating system is depicted in Figure 4. It 

consists of a rigid body of mass m , constrained to move in only one translational 

direction, whose position is completely defined by the single displacement coordinate 

x . A spring of constant stiffness k , fixed at one end and attached at the other end to the 

mass, provides elastic resistance to displacement. The energy dissipation mechanism is 

represented by a damper or dashpot having a damping coefficient c . The external 

excitation to the system is provided by the time-varying force  F t . Vibration in the 

absence of externally applied forces is also possible. Such vibration is referred to as free 

vibration. 

 

 
 

Figure 4. Mechanical model for a simple SDOF system 

 

The displacement of the mass is measured from its static equilibrium position and is 

defined as a function of time by the spatial coordinate  x t . The motion of the mass is 

resisted by the force sF  that develops in the spring and is defined by 

 

sF kx           (1) 

 

where k  is the spring constant. The units of k are generally defined as force per 

distance (e.g., pounds per inch, lb/in, or Newtons per meter, N/m). The relationship 

between the deformation in the spring and the force in the spring is illustrated in Figure 

5. For a completely elastic system, the spring serves as an energy storage device. The 

energy stored in the spring is called the strain energy, or potential energy, of the system. 

The strain energy V is calculated as the area under the force-displacement curve of the 

spring and is given by 

 

21

2
V kx           (2) 

A conservative system will continue to vibrate indefinitely even after the external 

excitation has ceased. However, all practical structures exhibit energy dissipation, or 

damping, that prevents this from happening. Damping is a very complex phenomenon 

for which numerous analytical models exist to describe its effect. The most commonly 
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employed analytical damping model is the linear viscous dashpot model (Beards, 1983). 

The damping force DF  is proportional to the velocity x  of the mass and is given by 
 

DF cx           (3) 
 

where c is the viscous damping coefficient having units of pound-seconds per inch (lb-

sec/in) or Newton-seconds per meter (N-sec/m). 
 

 
 

Figure 5. Force-deformation relationship for a linear spring 

 

It was mentioned in Section 1 that the primary feature distinguishing a dynamic 

problem from the corresponding static problem was the presence of inertia forces in a 

vibrating system. The inertia force IF is the product of the mass and the acceleration of 

the mass x  and is given by 
 

IF mx            (4) 
 

The negative sign indicates that the inertial force opposes the acceleration of the mass. 

 

D’Alembert’s principle of dynamic equilibrium is a convenient method for establishing 

the equations of motion for simple SDOF and MDOF systems. It essentially involves 

invoking Newton’s second law of motion to the system. Newton’s second law states 

that the rate of change of momentum is proportional to the applied force and occurs 

along the line of action of the force. For a constant mass, the rate of change of 

momentum is equal to the product of the mass and its acceleration. 

 

A free-body diagram of the SDOF system illustrated in Figure 4 is shown in Figure 6. 

The expression for dynamic equilibrium, using d’Alembert’s principle, is given by 

 

  0
x

forces mx          (5) 

 

 

Figure 6. Free-body diagram for SDOF system 
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Thus, by introducing the appropriate inertial force, it can be reasoned that the applied 

force on the mass is in equilibrium with the inertia force. Therefore, the dynamic 

problem is reduced to an equivalent problem of statics. Applying Eq. (5) to the free-

body diagram in Figure 6 results in the equation of motion for the system: 

 

  0F t kx cx mx            (6) 

 

or 

 

 mx cx kx F t            (7) 

 

Dividing Eq. (7) through by m results in 

 

 F tc k
x x x

m m m
            (8) 

 

or 

 

 2 F tc
x x x

m m
            (9) 

 

where the term   is called the natural circular frequency of the system, with units of 

radians per second, and is given by 

 

k

m
            (10) 

 

As illustrated by Eq. (10), the natural frequency is defined solely by the system’s mass 

and stiffness characteristics. Natural frequency plays a vital role in vibration analysis 

and will be referred to extensively throughout the chapter. 

- 

- 

- 
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