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Summary 
 
Central to any theory of continuum mechanics, are balance laws of mass, momentum, 
and energy. These provide us with universal relations, which should be satisfied during 
every process associated with the continuous body. However, to obtain general 
statements of these laws, several integral theorems are required. A major portion of this 
chapter therefore deals with divergence theorem, Stokes’ theorem and transport 
theorems, which are then used to obtain the balance laws in the form of partial 
differential equations to be satisfied away from the singular surface and jump conditions 
at the singular surface. 
 
In this chapter we use, unless specified otherwise, the notation introduced in the 
previous chapter on kinematics. In particular, E  denotes a three dimensional Euclidean 
space, associated with which is its translation space V , a three dimensional inner 
product vector space. We use in addition, the subscript κ  or χ  when referring to a 
reference or a spatial frame, respectively. Let ( )κ ⊂B E  and ( )χ ⊂B E  denote 
respectively, the fixed reference configuration and the current configuration. Let 1 2( )t t,  
be a fixed time interval, where 1 2{ }t t, ∈ . 
 
Integral Theorems 
 
In this subsection we state and prove the localization theorem, the divergence theorem, 
the Stokes’ theorem, and the transport theorem for volume and surface integrals. We 
have employed only elementary concepts from differential geometry in proving these 
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theorems.  
 
1. Localization Theorem for Volume Integrals 
 
Let φ  be a continuous function defined on an open set R ⊂ E . If for all closed sets 

Rπ ⊂   
 

0dV
π
φ = ,∫          (1) 

 
then ( ) 0φ =u  for all R∈u . To prove this, we start by defining  
 

0 0
1 1( ) ( ) ( ( ) ( ))

s s
I dV dV

V Vε ε
ε

ε ε

φ φ φ φ= − = − ,∫ ∫u u u u    (2) 

where sε  is a sphere of radius ε  and volume Vε  centered at 0 R∈u . A theorem in 
analysis (Rudin, W. Principles of Mathematical Analysis, 3rd Ed., McGraw-Hill (1976), 
page 317) yields,  
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where in (3) 2 , sup  can be replaced by max  due to continuity and compactness of sε . 
Since ( )φ u  is continuous, we get 0Iε →  as 0ε → . It then follows from Eq. (2), 
 

0
1( ) 0 lim ( ) 0

s
dV

V εε

φ ε φ= → = ,∫u u       (4) 

 
where the last equality is a consequence of (1). The point 0u  can be chosen arbitrarily, 
and thus we can conclude that ( ) 0φ =u  for all R∈u .  
 
Localization Theorem for Surface Integrals Let ϕ  be a continuous function defined 
on a surface ⊂F E . If for all surfaces ς ⊂ F  
 

0dA
ς
φ = ,∫          (5) 

 
then ( ) 0ϕ =u  for all ∈u F . This can be proved using arguments similar to those used 
above.  
 
Divergence Theorem for Smooth Fields Let f , p  and P  be respectively, scalar, 
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vector and tensor fields defined on 1 2( ) ( )t tκ × ,B . Assume these fields to be 
continuously differentiable over ( )κ B . Then for any part ( )κΩ ⊂ B  and at any time 

1 2( )t t t∈ ,  
 

( )f dV f dA
Ω ∂Ω
∇ =∫ ∫ N        (6) 

 
( )Div .dV dA

Ω ∂Ω
=∫ ∫p p N        (7) 

 
( )Div dV dA

Ω ∂Ω
=∫ ∫P P N        (8) 

 
where κ∈N V  is the outward unit normal to the boundary ∂Ω  of Ω . We outline a brief 
proof for (7). Let 1 2 3{ } κ, , ∈E E E V  be an orthonormal basis for κV . Therefore there 
exists 1 2 3 1 2 3{ }p p p X X X, , , , , ∈R  such that i ip=p E  and i iX=X E , with {1 2 3}i∈ , , . 
Consider a cuboid 1 2 3{ }A X B C X D E X Fκ= ∈ : < < , < < , < <XR E , where 
{ }A B C D E F, , , , , ∈R  are constants. Then the surface integral in (7), when written for 
the two faces of the cuboid which are orthogonal to 1E , is  

1 1 2 3

1
1 2 3

1

( ( ) ( ))
F D

E C

F D B

E C A

p B Y Z p A Y Z dX dX

p dX dX dX
X

, , − , ,

∂
= ,

∂

∫ ∫

∫ ∫ ∫
     (9) 

 
which is obtained using the fundamental theorem of calculus (Rudin, W. ibid., page 
134). We can write similar relations for the surfaces of the cuboid orthogonal to 2E  and 

3E . We get  
 

( )31 2

1 2 3

. Div .pp pdA dV dV
X X X∂

⎛ ⎞∂∂ ∂
= + + =⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫ ∫p N p
R R R

   (10) 

 
We have therefore proved the divergence theorem for a cuboidal region. Furthermore, 
we can show that it holds for regions which are obtained by smooth deformations of the 
cuboid and also for general regions which can be obtained by pasting together the 
deformed cuboids (This argument can be found in the elementary texts on calculus. For 
a more advanced treatment see Rudin, W. ibid., page 288). 
 
Equation (6) is obtained from (7) for a scalar p . A proof for (8) also follows from (7). 
Indeed, for an arbitrary constant κ∈a V ,  
 

( ) ( ) ( )T T. . Div Div . ,dA dA dV dV
∂Ω ∂Ω Ω Ω

= = =∫ ∫ ∫ ∫a P N P a N P a P a  (11) 

 
where in the last equality, the definition of the Div  operator has been used. Since a  is 
arbitrary, we get the desired result. 
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Divergence Theorem for Piecewise Smooth Fields Assume p  to be piecewise 
continuously differentiable over ( )κ B , being discontinuous across the singular surface 

tS  (with normal sN  and speed U ) and smooth everywhere else. Then for a domain Ω  
such that tS= Ω∩ ≠∅S , 
 

( ). Div . .sdA dV dA
∂Ω Ω

= +∫ ∫ ∫p N p p N
S

     (12) 

 
Similar statements hold for scalar and tensor fields. We now prove (12). Let ±Ω ⊂ Ω  be 
such that + −Ω ∪Ω = Ω  and S+ −Ω ∩Ω = . The normal to the surface S  is oriented such 
that it points into +Ω . Since p  is smooth within +Ω  and −Ω , we can use (7) to write  
 

\
(Div ) sdV dA dA

+ +

+

Ω ∂Ω
= ⋅ − ⋅ ,∫ ∫ ∫p p N p N

S S
 

 

\
(Div ) sdV dA dA

− −

−

Ω ∂Ω
= ⋅ + ⋅ ,∫ ∫ ∫p p N p N

S S
 

 
where ±p  are the limiting values of p  as it approaches S  from the interior of ±Ω . The 
relation (12) is obtained by adding these two equations.  
 
If q  is a vector field defined on 1 2( ) ( )t tχ × ,B  and piecewise continuously 
differentiable over ( )χ B , being discontinuous across the singular surface ts  (with 
normal sn  and speed u ). Then for ( )ω χ⊂ B  such that ts sω= ∩ ≠∅ ,  
 

( ). div . .sda dv da
ω ω∂

= +∫ ∫ ∫q n q q n
S

     (13) 

 
The proof for (13) is similar to that of (12). 
 
Stokes’ Theorem for Smooth Fields Let p  and P  be respectively, vector and tensor 
fields defined on 1 2( ) ( )t tκ × ,B . Assume these fields to be continuously differentiable 
over ( )κ B . Then for any surface ( )κ⊂ BF  with normal N  and boundary ∂F  
 

( )Curl . . ,dA d
∂

=∫ ∫p N p X
F F

      (14) 

 
( )TCurl .dA d

∂
=∫ ∫P N P X

F F
       (15) 

 
A proof for (14) can be obtained from (Rudin, W. ibid., page 287). To verify (15), we 
use (14). Indeed, for an arbitrary constant vector κ∈a V , 
 

( ) ( )T T. Curl Curl . . ,dA dA d
∂

= =∫ ∫ ∫a P N P a N a P X
F F� F

   (16) 
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where in the first equality, the definition of the Curl  of a tensor field is used. The 
desired result follows upon using the arbitrariness of a . 
 
Stokes’ Theorem for Piecewise Smooth Fields Consider p  to be piecewise 
continuously differentiable over ( )κ B . Assume p  to be discontinuous across the 
singular surface tS  and smooth everywhere else. Let tSΓ = ∩F  be the curve of 
intersection. Then 
 

( )Curl . . . ,dA d d
∂ Γ

= +∫ ∫ ∫p N p X p X
F F

     (17) 

 
To verify this relation start by considering two subsurfaces ± ⊂F F  such that 

+ −∪ =F F F  and + −∩ = ΓF F . Since p  is smooth in regions F ± , we can write using 
(14)  
 

\
(Curl ) dA d d

+ +

+

∂ Γ Γ
⋅ = ⋅ + ⋅ ,∫ ∫ ∫p N p X p X

F F
 

\
(Curl ) dA d d

− −

−

∂ Γ Γ
⋅ = ⋅ − ⋅ .∫ ∫ ∫p N p X p X

F F
 

 
Adding these two relations we get (17). Similarly, we obtain for a piecewise 
continuously differentiable tensor field P : 
 

( )Curl ,T dA d d
∂ Γ

= +∫ ∫ ∫P N P X P X
F F

     (18) 

 
If q  is a piecewise continuously differentiable vector field defined on 1 2( ) ( )t tχ × ,B , 
being discontinuous across the singular surface ts . Consider a surface ( )F χ⊂ B  with 
normal n  and let tF sγ = ∩ . Then 
 

( )c url . . . ,
F F

da d d
γ∂

= +∫ ∫ ∫q n q X q X      (19) 

 
The proof for (19) is similar to that of (17).  
 
Remark (Surface divergence theorem) Consider a vector field p  continuously 
differentiable over the surface ( )S κ⊂ B  (with unit normal N  and mean curvature H ) 
for a fixed time interval 1 2( )t t, . Then 
 

( )p . Div p 2 p. ,S

S S
dL H dAν

∂
= +∫ ∫ N      (20) 

 
where ν  is the outer unit normal to S∂  such that ( )ν, ,N t  form a positively-oriented 
orthogonal triad at S∂  with t  being the tangent vector along S∂ . Moreover, if p  is 
tangential, i.e. p p=P , then p 0⋅ =N  and (20) reduces to  
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTINUUM MECHANICS – Balance Laws - Anurag Gupta, David J. Steigmann 
 

©Encyclopedia of Life Support Systems (EOLSS) 

p . Div p .S

S S
dL dAν

∂
=∫ ∫        (21) 

 
We now prove (20). By definition ν = ×t N  and therefore we can use Stokes’ theorem 
to rewrite the term on the left hand side of Eq. (20) as 
 

( )

( )

( )

p . p . ,

p .

Curl p .

S S

S

S

dL dL

dL

dA

ν
∂ ∂

∂

= ×

= ×

= ×

∫ ∫
∫
∫

t N

N t

N N

      (22) 

 
Use the identity Curl( p) Div( p p )× = ⊗ − ⊗N N N  to get 
 
Curl( p) ( ) p (p ) Div pT× ⋅ = ∇ ⋅ − ⋅ +∇ ⋅ .N N N N N N P     (23) 
 
But ( ) 0T∇ =N N  (follows from 1⋅ =N N ) and p tr( p ) pDivS∇ ⋅ = ∇ =P P . Furthermore, 
Div 2H= −N  (using a result from the chapter on kinematics). Therefore we can rewrite 
(23) to get  
 
Curl( p) 2 (p ) pDivSH× ⋅ = ⋅ + .N N N       (24) 
 
Substituting this into (22) yields (20). 
 
Transport theorem for volume integrals with smooth fields Let P  and Q  denote a 
scalar, vector or tensor field continuously differentiable on 1 2( ) ( )t tκ × ,B  and 

1 2( ) ( )t tχ × ,B , respectively. Then for arbitrary parts ( )κΩ ⊂ B , ( )ω χ⊂ B  and at any 
time 1 2( )t t t∈ ,  
 
d PdV PdV
dt Ω Ω

= ,∫ ∫         (25) 

 

( )d QQdv dv Q da
dt tω ω ω∂

∂
= + ⋅ .

∂∫ ∫ ∫ v n      (26) 

 
Since Ω  is fixed with respect to time and P  is smooth over Ω , the time derivative and 
the volume integral in the left hand side of (25) can commute to give the right hand side 
of the equation. Equation (26) can be proved by first transforming the volume ω  to a 
fixed reference volume, say Ω . We get  
 

(div )

d dQ dv Q J dV
dt dt

Q dv Q dv

ω

ω ω

Ω
=

= + ,

∫ ∫
∫ ∫ v

      (27) 
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where J  is the Jacobian associated with the mapping which transforms Ω  to ω  and 
(div )J J= v . Equation (26) follows from (27) upon recalling the definition of the 

material time derivative and using the divergence theorem. 
 
Transport theorem for volume integrals with piecewise smooth fields Let Ω  be 
such that tS= Ω∩ ≠∅S . Then for a P  which is discontinuous across tS  but smooth 
everywhere else,  
 
d PdV PdV U P dA
dt Ω Ω

= − .∫ ∫ ∫S       (28) 

 
We now prove this relation. Recall surface parameterization introduced at the end of the 
chapter on kinematics. In a small neighborhood, say ΩS , of the singular surface S  we 
parameterize the domain by coordinates 1 2{ }ξ ξ ζ, ,  such that for S∈ΩX  we can write 

1 2 1 2
ˆ ( ) ( ) ( )t t tξ ξ ζ ξ ξ= , , + , ,X X N , where ˆ ∈X S  and 1 2{ }ξ ξ,  are convected. Let 

( )tς ζ ς− < < , where ς +∈  is constant. The position of the singular surface is 
indicated by 0ζ =  and it is assumed that the surface S  remains inside ΩS  during the 
instantaneous motion. Obtain  
 

( )

( )

1 2

1

1 2 2
1 2

\

\ ( )

\

( )

( ) ( )
0

A

t

A At

d d dPdV PdV PdV
dt dt dt

dPdV Pj d dA
dt

PdV

d Pj d Pj d dA
dt

ς

ξξ ξ ς

ζ ς

ξξ ξ ς ζ
ζ ζ

ζ

ζ ζ

Ω Ω Ω Ω

Ω Ω , −

Ω Ω

, −
, =

= +

= + ,

=

⎧ ⎫+ + ,⎨ ⎬
⎩ ⎭

∫ ∫ ∫

∫ ∫ ∫
∫

∫ ∫ ∫

S S

S

S

 

 
where Aj  is the Jacobian related to the change of coordinates. On the singular surface, 

1 2 0ζ ζ= = , 1 2 Uζ ζ= = , Aj ξ=  and dA dAξξ= , where ξ  is the surface Jacobian. 
Taking the limit 0ς| |→  we obtain the desired result. The infinitesimal area of the 
surface in terms of the new coordinates can be obtained by using Nanson’s formula, 

T ˆ
AdA j dAξ

−=N A N , where ˆ =N N  and A  is the gradient of the map from the new 
coordinates to X . For the considered transformation this formula reduces to 

AdA j dAξ= . 
 
Let ω  be such that ts sω= ∩ ≠∅ . Then for a Q  which is discontinuous across ts  but 
smooth everywhere else, 
 

( )div( )
s

d QQdv Q dv u Q Q da
dt tω ω

∂⎛ ⎞= + − − ⋅ ,⎜ ⎟∂⎝ ⎠∫ ∫ ∫v v n    (29) 
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where T( )u U ± ±= | | + ⋅F n n v  is the spatial speed of the singular surface ts . This 
relation can be proved by first transforming ω  to Ω  and then using (28). We get 
 

( ) 
S

d Qdv JQ dV U JQ dA
dt ω Ω

= − .∫ ∫ ∫      (30) 

 
The term U JQ  can be expanded as 
 

( ) ( )
( )

-T T( ) ( )

( )

U JQ Q u J Q u J

u Q Q

+ + + + − − − − −

− ∗

= | | − | |

= − ⋅ | |,

F N F N

v n F N
   (31) 

 
where u u± ±= − ⋅n v . Relations T( )U u± ± −= | |F N  and ( ) ( )+ ∗ − ∗| |=| |F N F N  have also 
been used. Equation (29) follows immediately after substituting (31) into (30). 
 
Transport theorem for surface integrals with smooth fields Let p  be a scalar, vector 
or tensor field continuously differentiable on 1 2( )tS t t× , . Then, for an arbitrary surface 

tS⊂S  
 

p (p 2p )d dA UH dA
dt

= − ,∫ ∫S S
      (32) 

 
where N , U , and H  are the unit normal, normal velocity, and the mean curvature 
associated with tS , respectively. We prove this relation using the surface 
parameterization outlined in the chapter on kinematics. We assume that p  can be 
extended to the small neighborhood ΩS , and use the same symbol to denote its 
extension. Obtain 
 

( )

{ }
{ }

1 2

1 2

( )
0

0( )

1

0

p p ( ( ))

(p ( p ) p )

p p p

A

A A A

A A

d ddA t t j dA
dt dt

j j j dA

j j dA

α ξξ ξ
ζ

ξ ζξ ξ

ζ

ξ ζ

ζ

ζ

,
=

=,

−

=

⎧ ⎫= , ,⎨ ⎬
⎩ ⎭

= + ∇ ⋅ +

= + ∇ ⋅ + .

∫ ∫

∫
∫

X

N

N

S

S

   (33) 

 
At the surface, 0ζ = , we have Uζ = , Aj ξ=  and 2Aj UHξ= − . Substituting these into 
(33) and recalling the definition of the normal time derivative, we obtain (32). 
 
 
- 
- 
- 
 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTINUUM MECHANICS – Balance Laws - Anurag Gupta, David J. Steigmann 
 

©Encyclopedia of Life Support Systems (EOLSS) 

 
TO ACCESS ALL THE 21 PAGES OF THIS CHAPTER,  
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx 

 
 
 
Bibliography  
 
Ciarlet, P. G. (2004) Mathematical Elasticity, Volume 1: Three Dimensional Elasticity, Elsevier. [An 
advanced text on non-linear theory of elasticity. It contains a mathematically rigorous treatment of 
balance laws].  

Gurtin, M. E. (1981) An Introduction to Continuum Mechanics, Academic Press. [Most of the results in 
this book are restricted to smooth deformations].  

Liu, I-S. (2002)Continuum Mechanics, Springer-Verlag. [Contains detailed proofs for obtaining various 
jump conditions].  

Šilhavý, M. (1997)The Mechanics and Thermodynamics of Continuous Media, Springer-Verlag. 
[Contains an excellent chapter on deriving balance laws from basic laws of thermodynamics and natural 
symmetries].  

Truesdell, C. A (1977) First Course in Rational Continuum Mechanics, Vol. 1, Academic Press. [This 
text, in particular, has an excellent treatment of surface interactions].  
 
Biographical Sketches 
 
Anurag Gupta He received B.Tech. in Civil Engineering from Indian Institute of Technology at Roorkee 
in 2002, M.S. in Civil and Environmental Engineering from University of California at Berkeley in 2003, 
and Ph.D. in Mechanical Engineering from University of California at Berkeley in 2008. His thesis dealt 
with plastic deformation in solids with interfaces. Currently, he is an Assistant Professor in the 
department of Mechanical Engineering at Indian Institute of Technology, Kanpur, India. His research 
interests include plasticity theory, dynamics of defects in solids, thermodynamics of irreversible 
processes, and thin films. 
 
David J Steigmann He received B.S. in Aeronautics and Astronautics from University of Michigan at 
Ann Arbor in 1979, M.S. in Aeronautics and Astronautics from M.I.T. (Cambridge) in 1982, and Ph.D. in 
Applied Mathematics from Brown University, Providence in 1988. Currently he is a Professor in the 
department of Mechanical Engineering at University of California, Berkeley, USA. Before joining 
Berkeley, he was a Professor in the department of Mechanical Engineering at University of Alberta, 
Canada (till 1997). His research interests are in the following areas. Mechanics of thin films and thin-
film/substrate systems: near-surface wave propagation and energy flux; Electromagnetic phenomena in 
solid mechanics: applications to thin-film/substrate problems; Surface stress, capillary phenomena, 
biological cell membranes, surfactant films in multi-phase fluid emulsions; Finite elasticity; Variational   
methods and elastic stability; Tensile (membrane) structures; Continuum mechanics; Nonlinear three-
dimensional mechanics of fabrics; Numerical analysis of ill-conditioned structural problems; Thin shells. 
 
 

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-161-04-00

