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Summary

This chapter is concerned mainly with the basic problems of the linear theory of
thermoelasticity. Beginning with the basic laws of thermodynamics, there follows a
treatment of the constitutive equations and the derivation of the equations of nonlinear
thermoelasticity. The next part of this work is devoted to the linear
thermoelastodynamics. First, some basic theorems are established. Then, an
investigation of thermoelastic waves is presented. The work concludes with a study of
the theory of thermoelastic equilibrium. Relevant examples which illustrate the theory
are given throughout the text.

1. Introduction

The theory of thermoelasticity is concerned with the interaction between thermal field
and the elastic bodies. The study of thermoelasticity was begun by Duhamel (1837) and
Neumann (1885) who postulated the equations of the linear thermoelasticity for
isotropic bodies. These equations have been justified by Biot (1956) on the basis of
irreversible thermodynamics. A derivation founded on modern continuum
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thermodynamics has been given by Eringen (1967). The theory of thermoelasticity is of
great importance. The published work in thermoelasticity is so large that it is not
possible to do justice to all contributors by mere mention of their names. An account of
the historical development, as well as references to various contributions, may be found
in the monographs by Green and Adkins (1960), Boley and Weiner (1960), Truesdell
and Toupin (1960), Nowacki (1962), Carlson (1972), Day (1985), lesan and Scalia
(1996).

In this work we present a short account of the linear theory of thermoelasticity. The
exposition of nonlinear thermoelasticity is presented to provide a base for the linear
theory. The reader interested in the nonlinear thermoelasticity is referred to the books by
Racke and Jiang (2000) and lesan and Scalia (1996).

The present work consists of three main parts. In the first part (Sections 2-5) we focus
attention to the derivation of the equations of thermoelasticity. The second part of this
article (Sections 6-10) contains a study of the dynamic theory of thermoelasticity. In the
last part we investigate some problems of the theory of thermoelastostatics.

To review the vast literature on applications and special problems is not our intention;
considerations of space and time have caused extensive selection to be made. The
illustrations included are examples considered relevant to the purpose of the text.

The assumptions of zero initial stress and uniform reference temperature are crucial to
the development of the classical linear thermoelasticity. Thermoelasticity of bodies with
initial stresses and non-uniform reference temperature is not considered here. The reader
interested in these subjects will find a full account in the works of Knops and Wilkes
(1973) and lesan and Scalia (1996).

In recent years there has been some interest in thermoelasticity of polar materials and
the theories of thermoelasticity with finite wave speeds. For an extensive review of the
literature on these theories the reader is referred to the monographs by Nowacki (1986),
Chandrasekharaiah (1986), Eringen (1990), Jou et al. (1996), Miller and Ruggeri
(1998), lesan (2004). We make no claim to completeness. It is hoped that the present
work gives an accessible treatment of a part of the contributions that have been made to
the subject.

2. Preliminaries

In what follows we consider a body that at time t, occupies the region B of Euclidean

three-dimensional space E3. we assume, unless specified otherwise, that B is a
bounded regular region.

The configuration of the body at time 1, is taken as the reference configuration. The

motion of the body is referred to the reference configuration and a fixed system of
rectangular Cartesian axes. We identify a typical particle X of the body with its position
X in the reference configuration. The coordinates of a typical particle X in B are
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X; (] =12,3). The coordinates of this particle in the position Y at time t are denoted
by ;. We have
y=y(xt), (xt)eBxl, (1)

where | =(t,,t,) is a given interval of time. We assume continuous differentiability of
y with respect to the variables X; and t as many times as required and

det N >0 on BxI. )
8xj

The configuration of the body at the time t is denoted by B’ and is called present
configuration. We shall employ the usual summation and differentiation conventions:
Latin subscripts (unless otherwise specified) are understood to range over the integers
(1,2,3) whereas Greek subscripts are confined to the range (1,2), summation over
repeated subscripts is implied and subscripts preceded by a comma denote partial
differentiation with respect to the corresponding Cartesian coordinate. In what follows,
a superposed dot denotes the material derivative with respect to the time. Letter in

boldface stand for tensors of an order p >1, and if Vv has the order p, we write Vij. k
(p subscripts) for the rectangular Cartesian components of V. We say that f is of

class CM-N on Bx(t,,t,) if f is continuous on Bx(ty,t;) and the functions

o o" f
., me{0,L...M}ne{0,L...N}, m+n<max(M,N),
axiéxj“_axk[a” {0L..MEne{0L..N} (M,N)

exist and are continuous on B x (t,,t;) . We write C N for cNN.

The local form of the conservation law of linear momentum can be expressed as
Tii.i + Po fi = pg¥; on Bx(ty,1), 3)

where Tji is-the first Piola-Kirchhoff stress tensor, p, is the mass density at time t,

and fi is the body force per unit mass.

If we define the second Piola-Kirchhoff stress tensor Sij by

T = Yi. ;5> (4)

then the local form of the conservation law of moment of momentum reduces to
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We denote by Eij the Lagrangian strain tensor,

1
5 :E(yk,iyk,j = &) on Bx(ty.1), (6)
where é‘ij is Kronecker’s delta.

The local form of the first law of thermodynamics can be written as
Poé:SijEij+PoS +Qj,j on Bx(t,,t)), (7)

where € is the internal energy per unit mass, S is the heat supply per unit mass, and
Qj is the heat flux associated with surfaces in B’ which were originally coordinate

planes perpendicular to the X -axes through the point X, measured per unit
undeformed area.

We assume that f; and S are continuous on B x (t,,t,), T-j and Qj are of class C*°

1
on B x(t,,t;) and continuous on B x [t;.1).

Let ® be a region of the continuum bounded by a surface 02 at time t, and
suppose that P is the corresponding region at time t,, bounded by the surface OP. We

denote by N, the components of the outward unit normal at OP . Let t be the stress

vector associated with the surface O®, but measured per unit area of the surface oP,
and let ( be the heat flux across the surface 0®, measured per unit area of OP. Then,

we have
ti:Tjinj, q:anj. (8)

We denote by T the absolute temperature, which is assumed to be positive. Let 77 be

the entropy per unit mass. We assume that 7 is of class C% and T is of class C%* on
B x (to>t1) . The local form of the second law of thermodynamics can be expressed as

. 1
If we introduce the Helmholtz free-energy,

‘//:e—TU’ (10)
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then the equation of energy can be written in the form
Po(W"‘TU"'T’?):SijEij"‘Qj,j+PoS- (11)

From (9) and (11) we obtain the following local dissipation inequality
: - 1

3. Constitutive Equations

A thermoelastic material is defined as one for which the following constitutive
equations hold

W =W (Epns T, T %)
Sij = S (B ToTio X, )
1 =17(EmnsTsT %),
Qi =Qi(Enn- T-T s X, )-

(13)

We suppose that the functions l/?,éij,ﬁ and (ji are of class C* on their domain. In the

case of homogeneous bodies the constitutive functions do not depend on X_. Clearly,
the constitutive equations (13) satisfy the principle of material frame-indifference.

Let us study the restrictions placed on the constitutive functions by the second law. We
introduce the notation

O = p¥. (14)

In view of (13), the inequality (12) becomes

oo oo \.. Oo
S. ——— |E.. 0 T - R Q T >0. 15
' 8Eij Eij~ ( o'1* 6Tj 8T T T (15)

We assume that o in (15) is arranged as a symmetric function of Eij . For a given

deformation and temperature, the inequality (15) is valid for all arbitrary values of
E”,T and T , subject to Eij = Eji. Thus, in absence of internal constraints, from
(15) we obtaln (see Coleman and Mizel (1964), Carlson (1972))
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g _ 0o __0o 0do _
i, T e T,
and

We conclude that the constitutive equations of thermoelastic bodies are given by

o =0 (Ey,T.%),
oo oo
S.=—, Sy 17
17, T T an

Qp = @ IO(Eij ,T,T’k,xm).
In view of (17), the energy equation (11) takes the form
,00T77:QLj + 0,5 onBx(t,,t). (18)

The next result is a consequence of inequality (16).

Theorem 3.1. The heat flux vanishes whenever the temperature gradient vanishes,

Q,(Enn-T-0.%) =0. (19)

Proof. Let us consider the function f (&,&,,&;) = fiéi(Emn,T,§1,§2,§3, X, ), where

Emn,T and X, are fixed. The inequality (16) shows that f is nonnegative. Since
f(0,0,0) =0, the function f has an extremum at (0,0,0). If we impose that
of /10&, =0 at (0,0,0), then we obtain the desired result.c

This theorem has been established by Pipkin and Rivlin (1958).
4. Equations of the Nonlinear Thermoelasticity

The basic equations of the nonlinear theory of thermoelasticity consist of equations of
motion (3), the energy equation (18), the constitutive equations (17) and the geometrical

equations (6), on B x (tO,tl) , where t, is some time instant that may be infinite. The

functions p,, fi and S, and the constitutive functionals & and Qj are prescribed.

The response functionals Qj are subjected to the restriction (16). To the field equations
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we must adjoin boundary conditions and initial conditions. In the case of the mixed
boundary-value problem the boundary conditions are

y; =¥, on S x(ty,t,), T=T on Syx(t,,t,),

- - (20)
T;n; =t on S, x(t,4), Qn; =6 on S, x(ty.4),

where §,(1=12,3,4), are  sub-surfaces  of oB such  that
S,uS,=5,US,=0B,5,nS,=5,nS, =, and §,T,E and G are
prescribed functions. The initial conditions are

y(x,0)=y°(x), ¥(x,0)=V"(x), 7(x,0)=71"(x), xeB, (21)

where yO,V0 and 770 are given. We assume that

(1) pg is continuous and strictly positive on B;

(i) f and S are continuous on B x[ty,t));

(ii) y°,v° and 7° are continuous on B x[ty.t,):

(iv) §/i are continuous on S_1 x[ty,t;) and T is continuous on S_3 x[ty,t));

(v) fi are continuous in time and piecewise regular on Szx[to,ti) and § is

continuous in time and piecewise regularon S, x[t,,t,).

The mixed problem of thermoelastodynamics consists in finding the functions Y, of

class C2? and T of class C>! on B x (tp-t,) that satisfy Egs. (3), (18), (17) and (6) on
B x (t,,t,) . the boundary conditions (20) and the initial conditions (21).

It is possible to set up more complicated boundary conditions than those considered
here. In the case of the convection condition on the boundary, the thermal condition is

anj =h(T -T,)on B x (t,.t,). (22)

Here Te is the temperature of surrounding medium and h is the heat transfer
coefficient.

The exposition of nonlinear thermoelasticity given here is presented to provide a base

for the linear theory. The reader interested in the nonlinear thermoelasticity will find a
full account in the books by Racke and Jiang (2000) and lesan and Scalia (1996).
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