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Summary

Nonlinear elasticity involves a number of concepts and methods that also occur in other
theories within continuum mechanics. An overview of nonlinear elasticity is first
presented that discusses these concepts and methods. Two specific additional theories
are then discussed, nonlinear viscoelasticity and mixture theory. It is shown how these
theories utilize generalizations of the concepts and methods introduced in the context of
nonlinear elasticity. The intention is to show that if one is educated in nonlinear
elasticity, one is also prepared to work in nonlinear viscoelasticity and mixture theory.

1. Introduction

In the period from the 1950’s through the 1970°s, nonlinear elasticity was the subject of
a great deal of interest and experienced a rapid growth. Many workers explored the
concepts involved in its formulation and the physical and mathematical consequences of
its theoretical structure. With the insights and experience gained from studying
nonlinear elasticity, prominent researchers such as R. S. Rivlin, A. E. Green, J. E.
Adkins and A. J. M. Spencer worked on the formulation of several additional theories in
continuum mechanics (An interesting overview of the activity in this period can be
gained by reading the titles of the papers listed in the collected works of Rivlin (1996).).
Among these are the formulation of constitutive equations for nonlinear phenomena,
nonlinear viscoelasticity, and the theory of interacting continua. Many topics within
nonlinear elasticity provided the foundation for their work. In particular, the kinematics
of large deformations, the use of polar decomposition, material symmetry
considerations and the theory of invariants, polynomial matrix equations and the
Cayley-Hamilton theorem were developed further in order to be of use in these later
theories. In addition, it was found that many fascinating results in nonlinear elastic
materials had their counterparts in these theories.

Thus, with an understanding of nonlinear elasticity, one is well positioned to understand
the formulation of additional theories and to then explore them. It is the intent of this
article to show the reader that an education in nonlinear elasticity means that one is also
educated, though perhaps unaware of it, in the foundations of several additional
subjects. In this article, we first present a summary of nonlinear elasticity. We then
present two additional subjects in continuum mechanics, nonlinear viscoelasticity and
mixture theory, emphasizing the role played by nonlinear elasticity in their formulation

©Encyclopedia of Life Support Systems(EOLSS)



CONTINUUM MECHANICS - Nonlinear Elasticity and Its Role in Continuum Theories - Alan Wineman

and application.

2. Nonlinear Elasticity

This section contains an outline of the topics of nonlinear elasticity that are relevant to
the purposes of this article. For more detailed presentations of the subject, see the
standard reference by Ogden (1984) and the review article by Beatty (1987).

2.1. Kinematics

A body is a set of material points called particles. A typical particle P is identified or
labeled by its position vector X at some reference time t,. The domain of X at time t,

is called a reference configuration of the body. Let x denote the position of particle P at
timet. The motion of particle P is described by the vector function

x=x(X1). 1)
For a fixed X, (1) gives the path of particle P as time t increases. At a fixed time t, (1)
gives the positions x of all particles of the body. The domain of x at time t is called

the current configuration of the body. This motion is assumed to be one-to-one so that
(1) can be inverted to express the label of a particle in terms of its current position

X=x"(xt) )

The velocity and acceleration of particle P are given by

X1
X(X.t)= @‘(ﬁt d (3)
oy (X,
x(x,t)z% (4)

The superposed dot denotes the derivative with respect to time holding the particle label
fixed. When the independent spatial variable is X, (3) and (4) give the material (or
Lagrangian) description of the velocity and acceleration. Relation (2) can be used to
change the independent spatial variable in (3) and (4) from X to x giving

v(xt)= X(X" (x,t),t) (5)
a(xt)=%(x" (xt),t) (6)

Relations (5) and (6) give the spatial (or Eulerian) description of the velocity and
acceleration.

In the remainder of this sub-section, explicit mention of the arguments is omitted for
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ease of presentation. In order that the motion be one-to-one, it is assumed that

J=detF>0, (7)
where
15).¢
il 8
oX ®)

is called the deformation gradient. This tensor contains information that compares the
rotation and distortion in the neighborhood of a material particle at time t to its
neighborhood in the reference configuration. The quantity J defined in (7) represents
the ratio of the current volume of a neighborhood of a particle to its volume in the
reference configuration. Application of the Polar Decomposition Theorem of linear
algebra leads to

F=RU=VR, (9)

in which the factors U, V, and R satisfy

RRT=R"R=1, (10)
u=uU", v=V". (11)
The orthogonal tensor R represents the rigid body rotation of the neighborhood of the
particle while U and V, called the right and left stretch tensors, describe the local

deformation of the neighborhood. It is tedious to compute tensors R and U from the
deformation gradient F. For this reason, one defines the more easily computed tensor,

C=F'F=U>. (12)
The tensor C, called the right Cauchy-Green strain tensor, has the same principle
directions as U and its principal values are the squares of those of U. Hence, C is
regarded as containing the same information as U about the local deformation of the
neighborhood. The deformation gradient F, its polar decomposition and the tensor C
play a fundamental role in the development of more advanced theories in continuum
mechanics.

2.2. Field Equations

The field equations are stated in local form. See Ogden (1984) for a more complete
development.

2.2.1. Conservation of Mass

Let p, and p denote the mass per unit volume at a particle in the reference and current
configurations, respectively. The statement of conservation of mass is that at each
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particle

pI = p, (13)
2.2.2. Conservation of Linear and Angular Momentum

The body force per unit mass on a material particle in the current configuration is
denoted by b, the unit outer normal to an area element on the surface of the current
configuration is denoted by n, the force per unit area on this surface area element is
denoted by T and the Cauchy or true stress tensor is denoted by o. Application of the

Principles of the Conservation of Linear Momentum in the current configuration leads
o

T=0c'n (14)
on the surface and to
dive+pb =pa (15)

at each point within the current configuration. The Principle of the Conservation of
Angular Momentum leads to the statement that the Cauchy stress tensor is symmetric,

oc=0' (16)
2.2.3. Conservation of Energy

The internal energy per unit mass at a material particle is denoted by ‘e’, the rate of
heat supply per unit mass to a particle is denoted by “r’, the heat energy per unit time

(heat flux) per unit area through a surface area element of the current configuration with
unit outer normal n is denoted by “q’, and the heat flux vector is denoted by q.

Application of the Principle of the Conservation of Energy in the current configuration
leads to

g=a'n (17)
on the surface and to

p€ =treFF + pr —divq (18)
at each point within the current configuration.

2.2.4. Entropy Inequality

The absolute temperature is denoted by @ and the entropy per unit mass of a particle is
denoted by 77. It is assumed that the entropy satisfies Clausius-Duhem inequality,

whose local form is
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._pr . (q
> _div| = |. 19
P (9] (19)

It is convenient for the purpose of presenting the constitutive theory to introduce the
Helmholtz free energy

w=e-no . (20)

An alternate version of (19), obtained with the use of (18) and (20), is
—p(y +n6)+troFF* > %qT .gradé . (21)

Field equations (15) and (18) hold in the current configuration, while boundary
conditions (14) and (17) hold on the surface of the current configuration. This is
inconvenient because the current configuration is usually unknown and is determined as
part of the process of solving a particular problem. For this reason, these equations are
transformed so that they hold in the known reference configuration. The results of this
transformation are presented here. For a detailed derivation, see Ogden (1984).

Let N denote the unit outer normal to a surface area element in the reference
configuration whose unit outer normal is n in the current configuration. The quantity

II=JoF" (22)

Is known as the first Piola-Kirchhoff stress tensor and represents a force per unit area in
the reference configuration. Boundary condition (14) becomes

T° =1I'N, (23)

Where T is the surface force per unit reference area. The equation of linear
momentum (15) becomes

DivIT + p,b = p,X. (24)

(Div denotes the divergence operator with respect to X.) Transformation of the equation
for the conservation of energy leads to the modified heat flux vector,

Q=JgF ", ()

where vector Q represents heat flux per unit reference area. Boundary condition (17)
becomes

Q=Q'N, (26)
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in which Qis the heat flux per unit area of the surface in the reference configuration.
The conservation of energy equation (18) becomes

p,&=tTIFF " + p r —divQ. (27)
2.3. Constitutive Equations for Nonlinear Elastic Response

An elastic solid, in the presence of heat conduction, is defined by the assumption that
the stress o, internal energy ‘e’, specific entropy 7, and by (20), the Helmholtz free

energy  at time tdepend only on the deformation gradient F, temperature 6 and
temperature gradient grad@ at time t. Thermodynamic arguments (see Ogden (1984))

show that the stress, internal energy, specific entropy and Helmholtz free energy do not
depend on the temperature gradient grad&. Hence, the constitutive equation for the

stress has the form
o= F[F(t).0(1)], (28)

in which F is a tensor valued response function. There are three main sources of
restrictions on ‘F: (a) the influence of superposed rigid body motions, (b) material
symmetry, (c) restrictions due to thermodynamics.

2.3.1. Influence of superposed rigid body motions

Consider the motion x =y (Xt) in (1). Suppose that the body undergoes a second
motion x =" (X,t) obtained from the first by a superposed rigid body motion,

2 (X.t) = QM) [x (X t)=d(t)]. (29)

Vector d(t) represents a rigid body translation. Q(t) represents a rigid body rotation
and satisfies

QM) =QM) ' QM) =1. (30)

It is assumed that the superposed rigid body motion only affects the stress by rotating it.
This leads to the condition that

FQWF(t).0(t)|=QM)F[F(t).0(t) |]Q®)" (31)

for any Q(t) satisfying (30). This, when combined with (9) leads to the statement that
(28) is of the form

c=R(t) F[U(t),0(t)]R(1)". (32)

Because (i) the determination of R and U from F using (9) is tedious, (ii) U and C
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contain essentially the same information about the local deformation and (iii) ‘F is as
yet arbitrary, (32) is usually restated without loss in generality as,

s=F(t)G[C(t).0(t)]F(1)", (33)

in which G is a new response function. It is straightforward to show that (33) satisfies
(31).

2.3.2. Material Symmetry

The concept of material symmetry arises from the fact that a material has some physical
microstructure in its reference configuration, such as a crystal structure or randomly
oriented macromolecules. Consider a sample of material in its reference configuration
and its microstructure. Suppose there is a transformation of this reference configuration
to a new configuration such that the material appears to have the same microstructure as
before. Let both the original and transformed configurations be subjected to the same
homogeneous deformation with deformation gradient F. The underlying
microstructures, which appear to be the same in their respective reference
configurations, are distorted in the same way. The stresses are assumed to be the same
and these configurations are considered to be mechanically equivalent.

A transformation of the original reference configuration to one that is mechanically
equivalent is a linear transformation is denoted by H. One restriction on H is that it
produce no volume change and this leads to the condition that |detH|=1. In addition,

for most equivalent microstructures of interest, H is a rotation or a reflection and
satisfies

HH =H'H=1. (34)
Symmetries of a material are described by giving the set of transformations H that lead
to equivalent microstructures. These form a mathematical entity called a material

symmetry group.

For each transformation H of a material symmetry group, the above discussion implies
that the constitutive equation (28) satisfies

FF(v).0()]=F[F(t)H.0(1)] (35)
Material symmetry restrictions can be imposed on the response function G by
substituting (33) into (35),

H'G[C(t),0(t)[H=G[H'C(t)H,0(t)] (36)
2.3.3. Thermodynamical Considerations

Thermodynamical arguments utilizing the entropy inequality in the form (21), that are
by now standard, lead to the result that the Helmholtz free energy is independent of the
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temperature gradient,
v=y(F.0) (37)

and to the following relations

G:J‘1MFT , (38)
oF
%4
- 39
=" (39)
g-gradé<0 . (40)

Since all physical variables are evaluated at time t, explicit dependence on time is
omitted for notational convenience. These thermodynamical restrictions are now
combined with the restrictions associated with the influence of superposed rigid body
motion and of material symmetry. Since y is a scalar, the restriction imposed by the

independence of a superposed rigid body motion requires that  (F,9) satisfy

w(F,0)=y(QF,0). (41)
This is satisfied by writing
Py (F.0)=W(C,6) . (42)

When this is substituted into (38), the expression for the stress reduces to

sz-lp[ﬂ+(ﬂjT}FT. @)
oC \ 0C

Note that this is of the form (33).

Since W(C,H) is a scalar, the earlier discussion on material symmetry leads to the
restriction

W (C,0)=W (H'CH,0) . (44)
2.3.4. Material Symmetry Restrictions-General Results

The method of determination of the form of G that satisfies (36) and of W that satisfies
(44) has been presented in the classic review article by Spencer (1971). For each type of
material symmetry, there is a set of basic scalar functions 1, (C) k=1---,N, called
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invariants, that have the property,
1, (C)=1,(H'CH) (45)

for each transformation H of the material symmetry group. W can be expressed as a
function of these invariants

W (C,0)=W (1,(C),...,1,(C).9). (46)

With W written as (46) and with property (45), it is seen that (44) is satisfied. Then (43)
becomes

Lo aw o, (a1 Y || .
c=1J F{;ﬁlklzé’CJ{ﬁCj HF . (47)

This is of the form

o= JlF{ZN:CDkPk}FT, (48)

k=1

in which @, (1,,...,1,) are scalars to be determined for a particular material and

T
Pk :ﬂ+(ﬂj (49)
oC oC

are matrix polynomials associated with the particular material symmetry under
consideration.

It should be noted that (47) arose out of the restrictions due to thermodynamics, the
influence of superposed rigid body motion and material symmetry. One of the results
presented in Spencer (1971) is that if a function G satisfies condition (36), it can be
written in the form

g:i(i)kpk ' (50)

in which @, are scalar functions of the invariants and P, is defined in (49). The

consequence of the thermodynamical restriction is that the scalar coefficients d)k can be

expressed in terms of a single quantity, the Helmholtz free energy. It has been shown,
(see Spencer (1971)), that if a tensor valued function of a set of vector and tensor
arguments satisfies a material symmetry condition analogous to (36), it can be
expressed in a form similar to (50), i.e. as a sum of terms, each being a product of a
scalar and a tensor. The scalar coefficient is a function of basic scalar invariants and the

©Encyclopedia of Life Support Systems(EOLSS)



CONTINUUM MECHANICS - Nonlinear Elasticity and Its Role in Continuum Theories - Alan Wineman

tensor is a basic tensor function, both being associated with the particular material
symmetry and set of independent variables under consideration.

2.3.5. Material Symmetry Restrictions — Specific Symmetries

The symmetries commonly used to describe nonlinear elastic materials are isotropy,
transverse isotropy and orthotropy.

IsoTROPY: A material is said to have hemihedral or proper isotropy if the set of material
symmetry transformations H consists of rotations. It is said to have holohedral or full
isotropy if the group of material symmetry transformations consists of rotations and a
central reflection. In either case, the set of strain invariants is

1,(C)=trC, IZ(C)=%[(trC)2 ~tr(C?) ], 15(C) = detC, (51)

TRANSVERSE ISOTROPY: Let the axes of a Cartesian coordinate system define directions
with respect to the material in the reference configuration. A material is said to have
transverse isotropy with respect to the direction indicated by, say, the X, axis, if the set
of material symmetry transformations consists of rotations about this axis. Different
classes of transverse isotropy arise by also including reflections about or perpendicular
to this axis. In any case, the set of strain invariants consists of the invariants in (51) and
also

l,(C)=Cy, 15(C)=C,* +C,°. (52)

ORTHOTROPY: Let the axes of Cartesian coordinate system define directions with
respect to the material in the reference configuration. A material is said to have

orthotropy if the set of material symmetry transformations consists of 90° rotations
about each of the axes. Different classes of orthotropy arise by also including reflections
about or perpendicular to these axes. The set of invariants consists of

,(C)=C,1,(C)=Cy, 15(C)=Cy, 1,(C)=C,%, I, (C)=C,*, 1,(C)=C,*>  (53)

2.3.6. Material Symmetry Restrictions — Forms For Constitutive Equations
For an isotropic material, use of (51) in (47) leads to

o=20F| | W W W[ Wy W, W | (54)
oL ol ol o, ol ) ol

The calculation of FIF", FCF' and FC?F'in (54), in view of (12), induces a new
strain tensor B,

B=FF", (55)
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called the left Cauchy-Green strain tensor. In addition, it is readily shown for the
invariants in (51) that 1, (C)=1,(B). Then (54) becomes

o=20 1N [ W ) W Ny Wpe) (56)
o, o, ‘o, | ol

where AW /41, is now a function of 1, (B). In deriving (56), use has been made of the
Cayley-Hamilton theorem

B =1B*-1,B+1,l . (57)

An alternate form of the constitutive equation is obtained if (57) is multiplied by B!
and the resulting expression for B? is substituted into (56),

o=20 |1, W W) W | Wga], (58)
oL, o) ol ol,

Relations analogous to (54) can be developed for transversely isotropic and orthotropic
materials. For the sake of brevity of presentation, this will not be done here.

Two comments are important at this point. First, the Cayley-Hamilton theorem has been
indispensable in the development of representations of constitutive equations for
different physical phenomena and material symmetries. Second, it is possible to
eliminate F and C from (54) and introduce the strain tensor B only for an isotropic
elastic material.

2.4. Constraints

The possible motions of a body may be limited by constraints such as incompressibility
or inextensibility in certain directions. Such constraints impose restrictions on the
constitutive equations. Discussion here will be restricted to the constraint of
incompressibility.

In many polymeric materials, the volume change during deformation is observed to be
very small. This leads to an idealized material model for which any possible motion
must satisfy the constraint,

J=detF=1. (59)

Motions that satisfy (59) are described as being isochoric. The constraint condition (59)
implies that

l,=detB=J%=1. (60)
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Reconsideration of the restrictions of the thermodynamics of materials with constraint
(59) leads to a modified form for (38),

0'=—pl+po%FT , (61)

in which pis an arbitrary scalar. Note, by (13) and (59) that p = p,. The restriction

imposed by consideration of the influence of superposed rigid body motions must still
be satisfied so that (42) again holds. When this is used in (61), the result is a modified
form of (43),

c=—pI+F{%+(?N—Cj }FT. (62)

If the material is isotropic in its reference configuration, material symmetry
considerations (46), (51) and (60) lead to

W (C,0)=W (I,,1,,6) . (63)

When this is substituted into (62), the calculations and use of the Cayley-Hamilton
theorem lead to results analogous to (56) and (58),

o=—pl+2|| W W lg-Wpa| (64)
o, ta, ) A,

o=—pl+2 Wg Mga| (65)
I
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