
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTINUUM MECHANICS - Configurational Forces - Gérard A. Maugin 

©Encyclopedia of Life Support Systems (EOLSS) 

CONFIGURATIONAL FORCES 
 
Gérard A. Maugin 
Institut Jean Le Rond d’Alembert (UMR 7190 CNRS), Université Pierre et Marie Curie, 
Paris, France 
 
Keywords: Continuum mechanics, material forces, configurational forces, defects, 
inhomogeneity, elastic materials, plasticity, thermomechanics, fracture, growth, path-
independent integrals, nonlinear waves, numerics 
 
Contents  
 
1.  Introduction  
2 .Concepts of Piola stress and configurational stress 
3. Configurational force 
4. Pseudo-inhomogeneity and pseudo-plastic effects 
4.1.Materially Homogeneous Thermoelasticity 
4.2.Other Cases 
5. Inhomogeneous pure elasticity: conservation laws 
5.1.A Sufficiently General Variational Formulation 
5.2.Definitions of Various Systems 
5.3.The Case of Hyperelasticity 
5.4.Dissipation: Elementary Approach 
6. General continuum mechanics: canonical conservation laws 
6.1. Reminder 
6.2. Canonical Balance Laws of Momentum and Energy 
6.2.1.A Canonical Form of the Energy Conservation  
6.2.2.Canonical (material) momentum conservation  
6.2.3.Case   
6.2.4. Examples without body force 
7. Configurational forces acting on field singularities 
7.1. Introductory Remark 
7.2. The Case of a Progressing Crack  
7.2.1.Outside singularity sets 
7.2.2.Case of Singular Fields.  
7.2.3.The case of a steadily progressing notch 
7.2.4.Case of smoothly materially inhomogeneous elastic materials  
7.3. The Case of a Dissipative Phase Transition Front (Singular Surface I) 
7.3.1.Jump relations:  
7.3.2.Problem 
7.3.3.Several remarks are in order 
7.4.The case of thermo-mechanical shock waves (singular surface II) 
7.5.Continuously Distributed Singularities  
8. Configurational forces and numerics 
8.1.Computing Configurational Forces for their own sake 
8.2.Exploiting Configurational Forces as Numerics Criteria 
9. Conclusion: the World of configurational force 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTINUUM MECHANICS - Configurational Forces - Gérard A. Maugin 

©Encyclopedia of Life Support Systems (EOLSS) 

Glossary 
Bibliography 
Biographical sketch 
 
Summary  
 
Configurational forces are those thermodynamic (co-vectorial) forces that are associated 
by duality with any local manifestation of a material inhomogeneity, whether this is a 
real material inhomogeneity (foreign inclusion, rapid but smooth or abrupt change of 
property) or a more or less localized defect (dislocation, disclination, phase-transition 
front, shock wave). They are calculated from the usual field solution by means of the 
so-called Eshelby material stress and their arena is the material manifold itself. They 
have, therefore, no Newtonian nature, and are often associated with a local structural 
rearrangement of matter. When inserted in a criterion of evolution, they allow for the 
future determination of the evolution of the material inhomogeneity or defect. Examples 
of such “forces” are the Peach-Koehler force acting on a dislocation in elasticity, the J-
integral of fracture theory, and the driving force acting on an evolving phase-transition 
front. The present contribution presents the “thermomechanics” of this fruitful concept 
in the absence or presence of intrinsic dissipative effects while it itself often is the 
patent mark of a dissipation of topological origin. Configurational forces also find 
useful applications in the implementation of various numerical schemes.  
 
1. Introduction 
 
Continuum mechanics in its simplest form has been the paragon of field theory and 
developed in parallel with the mathematical field of partial differential equations since 
the inception of this concept by d’Alembert in his studies of wave motion in a string and 
his elements of hydrodynamics in the mid 1700s. Thereafter progress was relatively 
slow due to the mathematical difficulties in obtaining appropriate solutions to problems 
of complex geometries and finding the most appropriate functional classes to allow for 
the existence of the looked for solutions (see Chapter on “Mathematical issues” in this 
encyclopedia volume). Now often considered, with some scorn - or the least, 
condescension - as an « old » and almost closed science by some physicists, it is true 
that further progress at the conceptual level was also slow and perhaps not as 
spectacular as in other branches of “natural philosophy”. Had to be grasped and 
mathematically formulated the difficult notion of dissipation, whether in fluids in the 
form of viscosity, and then in solids in the form of plasticity and damage.  
 
Until recently all these advances were made in the framework of three tenets of 19th 
century physics: linearity, isotropy, homogeneity. Of course there are exceptions to 
these such as the early introduction of finite strains in elasticity by Cauchy in the 1820s 
and the inherent nonlinearity of some problems of fluid mechanics. Anisotropy was 
conquered next due to the consideration of crystals. This even reached fluids in the form 
of liquid crystals (see a foregoing chapter in this volume). Considerations of material 
heterogeneities were to come last as we shall briefly see. Apart from mathematical 
advances with the introduction of new functional spaces (Sobolev spaces, distribution 
theory), the main advance that emerged after the rejuvenation (in fact a true “rebirth”) 
of the field by authors such as C.A.Truesdell (e.g., Truesdell and Toupin, 1960; 
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Truedsell and Noll, 1965), was the firm grounding of continuum mechanics in a thermo-
mechanical framework, to the posthumous satisfaction of Pierre Duhem (see Maugin, 
1999a). That very much helped to classify and logically arrange the field, however 
sometimes to a useless extreme “bourbakism”, as also to incorporate some multi-
physical effects (e.g, electromagnetism, see Eringen and Maugin, 1990), and to prepare 
the way for enlarging the categories of modeling, including multiscale continuum 
mechanics and the introduction of scale effects (characteristic internal lengths, 
nonsymmetric Cauchy stress, micropolar and micromorphic continua; gradient 
theories). All these advances of the second half of the 20th century are more 
generalizations than new conceptual thinking.  
 
It is only at this point that more attention was paid to material heterogeneities, whether 
in the case of composite materials or that of polycrystals, and the necessary 
accompanying notion of defects. This, in our opinion, is the last great conceptual 
advance in continuum mechanics, in particular due to the recognition of the conceptual 
unity of the sub-field of continuum mechanics related to the notion of configurational 
force, the subject matter of this chapter. Indeed, the first example of such “forces” is the 
Peach-Koehler (1951) force that drives a dislocation line, while the second is the force 
on a material elastic inhomogeneity (e.g., inclusion) and a field singularity in the 
pioneering work of J.D.Eshelby (1951), whom we consider the  “founding father” of 
our field. The remarkable feature of these developments in a half century, but 
accelerated in the years 1990s-2000s, has been the new interrelation of continuum 
mechanics with recent fields of mathematical physics, in particular in so far as 
invariances are concerned. This is shown in the forthcoming sections.  
 
The basic thinking here is a typical reflex of a good “mechanician”. Whatever 
apparently moves or progresses in the matter in an observable manner is thought as 
being acted by a  “force” dual to the observed displacement of that “object”. But this is 
not a force of the Newtonian type, for the object can be a material defect of 
mathematically vanishing support, a dislocation line, a mathematical surface of 
discontinuity (e.g., a phase-transition front, a shock wave), a material inclusion, a hole, 
a field singularity such as a crack tip, a strongly localized mathematical field solution 
(e.g., structured shock waves, solitons), etc. In the framework of continuum mechanics 
all these take place on the material manifold 3M , i.e., the set of material points 
constituting the body in a more or less smooth manner. This is directly related to the 
notion of material heterogeneity since that property describes the dependency of the 
material properties on the material point (not the point occupied in physical space), 
hence on the local configuration. The problem with such “configurational” forces is that 
they are not directly accessible, but what is shown in their theory, is that they may be 
computed once more classical entities are obtained, and then further progress of their 
point of application can be envisaged depending on the implementation of a criterion of 
progress. One easily imagines the practical, engineering, interest for such a procedure in 
problems of fracture (progress of a crack tip) or phase transformations because of its 
predictive nature. 
 
The exposition that follows is a rational ordered reconstruction of the field rather than a 
linear history of it. First is recalled the important notion of Piola transformation, and 
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then follows that of quasi-static configurational (Eshelby) stress (Section 2). 
Configurational forces are introduced in Section 3 along with material and so-called 
inhomogeneity forces. Effects analogous to material inhomogeneity and plasticity in so 
far as configurational forces are concerned are considered in Section 4. Section 5 is 
devoted to the paradigmatic case of inhomogeneous pure elasticity (hyperelasticity). 
This gives an opportunity to use a variational formulation, apply Noether’s theorem, 
and introduce the notion of canonical conservation laws, next to that of the basic 
balance laws. The dynamical material Eshelby stress and material momentum come up 
in this nondissipative approach. Section 6 presents the setting for balance and canonical 
balance laws in the general case when dissipation is present and is subjected to the 
second law of thermodynamics. Section 7 deals with configurational forces acting on 
field singularities. This shows the intimate relationship of the subject matter with the 
theory of fracture and that of the propagation of singular surfaces. Section 8 deals in 
some discursive manner with the interaction between configurational forces and 
numerical schemes of various types. Finally, Section 9 gives a far from complete 
overview of the field. This is complemented by a bibliography, too short to render 
justice to all contributors and the wealth of recent publications. 
 
2. Concepts of Piola Stress and Configurational Stress 
 
The classical transformation between Cauchy’s stress σ and the first Piola stress T is 
given by 
 

1 1
F F,  J Jσ σ− −= =T F F T ,  (2.1) 

 
where F  is the deformation gradient between the reference configuration RK (local 
coordinates X ) and the actual configuration at time ,   tt K (local coordinates = 
placement x ), and F detJ = F . As a matter of fact, the transformation (2.1) that goes 
back to Piola (1836, 1848) accounts for the basic fact that the stress is a quantity 
defined per unit surface, so that (2.1) in fact relates to the form invariance of the applied 
stress vector in the actual configuration, a vector field, i.e.,  
 

dsdS σ.. nTN =               (2.2) 
 
and 
 

dSJdsdsJdS 1
F

1
F .,. −− == FNnFnN                         (2.3) 

 
where n  and N are unit normals in correspondence between tK and RK .. That is why 
(2.1) is essentially a specific vectorial transformation and not a second-order tensorial 
one. Only the second Piola stress defined by  
 

T 1 T 1 T
F F,J Jσ σ− − − −= = =S TF F F FS F ,   (2.4) 

 
is a nice material stress tensor also referred to as the energy stress (see below).  
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All above equations refer to one reference configuration only K  (no subscript R to 
simplify the notation) and this is sufficient in most continuum mechanics. Accordingly, 
that reference configuration is chosen as the most convenient one for computations 
depending on the geometry of the deformable body under study. With the consideration 
of the physics of the problem this may also be chosen as a stable solution providing a 
minimum of energy (cf. Lardner, 1974)). We should have been more careful in noting 

 ,  and K K KF T S the various objects where the relation to the selected reference 
configuration K  is understood.  The question naturally arises of a possible change of 
reference configuration, e.g., between configurations K  and K ′ . Let PKK’ the 
transformation between K  and K ′  at a material point X. Given the tensorial nature of 
F  and T  - these are in fact two-point tensor fields, i.e., geometric objects having their 
two feet on different manifolds -, we have the following transformations 
 

' ' ',K K KK K K K KP P′ = =F F F F ,  (2.5) 
 

1 1
' ' ' ' ' ',K K K K K K K KK KK KJ P J P− −= =T T T T    (2.6) 

 
where  
 

' ' ' ',  KK K K K K KKP P P P= =I I ,  (2.7) 
 
I  being the identity transformation. Of course (2.6) are Piola transformations. 
 
 Now consider the case of energy-based elasticity for which there exists a potential 
energy per unit volume of the considered reference configuration, e.g., ( )K KW F , such 
that 
 

/K K KW∂ ∂=T F .  (2.8) 
 
Accordingly, for another reference configuration K’ we would have 
 

' ' '/K K KW∂ ∂=T F .  (2.8)’ 
 
Since W is per unit volume, we have 
 

1 1
' ' ' ',K K K K K KK KW J W W J W− −= = .  (2.9) 

 
By direct computation of (2.8)’ and use of (2.5) and (2.9), we check that (2.6) hold 
identically.  
 
 Now let us do something more original by computing the quantity  
 

( )( )1
' ' ' '

' '

K
KK KK K K KK

KK KK

W J W P
P P

∂ ∂
∂ ∂

−= =b F .  (2.10) 
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The result is 
 

( )1
' ' ' ' 'KK KK K K K K KJ P W−= − +b T F .  (2.11) 

 
We call configurational stress the geometric object defined in the K configuration by  
 

' ':K KK KKP= =−b b b ,  (2.12) 
 
i.e., as shown by a simple calculation 
 

'
'

K
K KK K K K K

KK

W P W
P

∂
∂

= = − = −b b I T F .  (2.13) 

 
This will also be called the quasi-static Eshelby material stress.  
 
Let P  the two-point tensor field representing the transformation 'K KP . Accordingly, 
(2.5) and (2.13) read (T = transpose)  

T, = R
W W∂

∂
= − = −F FP b P 1 TF

P
,  (2.14) 

 
where R1 is the identity in RK K= , and  
 

( ) ( )1 ,W J W W−= =P F F P .  (2.15) 
 
This follows Epstein and Maugin (1989,1990) so that 
 

( ) ( ) ( ) T, ,
, = R

W W W
W

∂ ∂ ∂
∂ ∂ ∂

= = − = −
F P F F P

T b P 1 TF
F F P

.  (2.16) 

 
We can also note, on account of the reciprocal of (2.4)1 that 
 

T . := = =TF SF F S C M ,   (2.17) 
 
where T=C F F  is the Cauchy-Green finite-strain on the configuration RK , and M  is 
the so-called Mandel stress tensor in RK  (cf. Lubliner, 1990; Maugin, 1992). 
Therefore, configurational stresses and Mandel stresses are intimately related since they 
differ only by the presence of an energy isotropic term, i.e.,   
 

orR RW W= − + =b 1 M b M 1 .  (2.18) 
 
This difference reduces to a pure change of sign for an isochoric deformation associated 
with b or M .  
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If the Cauchy stress is symmetric (as happens in many cases), then we let the reader 
check with the help of (2.1) and (2.14) that this results in the symmetry of b  with 
respect to C , considered as the deformed metric on the material manifold 3M , i.e.,  
 

( )T T= =Cb Cb b C ,   (2.19) 
 
as first noticed by Epstein and Maugin (1989). If, furthermore, the material considered 
is isotropic, then classical symmetry (i.e., with respect to a neutral unit covariant 
metric) applies because S  becomes a function of the basic invariants of C .  
 
3. Configurational Force 
 
If RK  is a global reference configuration over the material body B , and 'K KP is smooth 
and integrable over the material manifold, then P  will be a gradient of a deformation in 
a classical sense, so that (2.6) is not distinguishable from a standard Piola 
transformation. The situation may be altogether different in the case when the body is 
not materially homogeneous. Indeed, the case when T  is function of F and F  only, 
where F  is true gradient, represents the essence of pure homogeneous elasticity - a 
paradigmatic case as we shall see herein after - with 
 

( ) ( )W∂
∂

= =
F

T T F
F

.   (3.1) 

 
As soon as W  becomes an explicit function of additional arguments, we are no longer 
in this ideal framework. This happens whether the additional argument is another field 
variable such as temperature in thermoelasticity, or electric polarization or 
magnetization in electro-magneto-elasticity (cf. Maugin, 1988), or else any variables 
such as so-called internal variables of state supposed to account for the hidden 
complexity of microscopic processes which have a macroscopic manifestation in the 
form of thermodynamic irreversibility (i.e., dissipation; cf. Maugin, 1999a). These cases 
will be examined later on. Another frequent possibility is that the energy W  depends 
explicitly on the material particle X , in which case ( );W W= F X  and the elastic 
material is said to be materially inhomogeneous. We call material force of 
inhomogeneity the material co-vector defined by  
 

inh

expl

: W∂
∂

= −f
X

,  (3.2) 

 
if W  is a sufficiently smooth function of X , and where the subscript expl means that 
the material gradient is taken at fixed field (here F ). In composite materials where 
inhomogeneities manifest abruptly by jumps in material properties, (3.2) must be 
replaced by a distributional (generalized functions) definition. The force inhf belongs in 
the world of material forces (cf. Maugin, 1992, 1995) since it is a co-vector on the 
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material manifold. It is a directional indicator of the changes of elastic properties as it is 
oriented opposite to the direct explicit gradient of W .  
 
Now we can exploit the thought experiment of Epstein and Maugin (1990a,b). To that 
purpose, imagine that at each material point X  we can give to the material deformation 
energy the appearance of that of a pure homogeneous elastic body (dependence on one 
deformation only and nothing else) by applying the appropriate local (at X ) change of 
reference configuration. We consider this along with the concomitant change of volume 
(compare to (2.9))  
 

( ) ( )( ) ( )1; ,W W J W W−= = =KF X FK X F K .  (3.3) 
 
Performing the same operation as in (2.16), we clearly have 
 

( ) ( ) T; ,
, R

W W
W

∂ ∂
∂ ∂

= = − = −
F X F K

T b K 1 TF
F K

. (3.4) 

 
Thus there exits a relationship between the notion of material inhomogeneity and that of 
configurational (or Eshelby) stress. This is made more visible by applying the definition 
(3.2): 
 

( ) ( )

( )( )

inh

expl

TT T
R

; ,  .

 . . . .

W W∂ ∂ ∂
∂ ∂ ∂

∂
∂

− −

= − = −

= = ∇

F X F K Kf
X K X

Kb K b K K
X

. (3.5) 

 
On the other hand, if we compute the material divergence of b  in the case of quasi-
statics in the absence of body force, for which the equilibrium at X  is simply given by 
divR =T 0 , we have 
 

( ) ( )

( )

T

T

expl

div div . - .

.

R R R R

R

W

W W∂ ∂
∂ ∂

= ∇ − ∇

⎛ ⎞
= − ∇ +⎜ ⎟
⎝ ⎠

b T F T F

T F
F X

,  (3.6) 

 
or, on account of (3.4)1 and (3.5), 
  

inhdivR = −b f .  (3.7) 
 
Here the material force of inhomogeneity is deduced from (or balanced by) the material 
divergence of the configurational stress. It is justified to call configurational forces 
these forces that are deduced through an operation acting on the configurational stress, 
whether by differentiation or integration (e.g., over a material surface, along a material 
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contour in 2D). If we combine the results of (3.5) and (3.7), we also obtain an equation 
for b  which involves the local transformation K in a source term, that is, 
 
div .R + Γ =b b 0 ,  (3.8) 
 
where we have defined a material connection ( )Γ K  by 
 
( ) ( ) ( )T1 1. .R R

− −Γ = ∇ = − ∇K K K K K .  (3.9) 
 
The result (3.8) is due to Epstein and Maugin (1990a,b). If K  is the same for all points 
X , then R∇ =K 0 , and (3.8) reduces to the strict conservation law 
 
divR =b 0 ,  (3.10) 
 
in the case (we remind the reader) of the absence of body force and neglect of inertia 
(quasi-statics). Otherwise, the above-reported intellectual construct means that the 
operation carried out brings the neighborhood of each material point X  into a 
prototypical situation of the pure elastic type which allows one to compare the response 
of different points. Since this is point-like, the operation will not result in an overall 
smooth manifold, but in a collection of non-fitting neighborhoods or infinitesimal 
chunks of materials, and K  will not, accordingly, be itself a gradient. It may at most be 
a Pfaffian form. Of course, if K  is not integrable, so is the case of =F FK . With 
Eqs.(3.8)-(3.9) we enter the geometrization of continuum mechanics that we shall not 
pursue here although this was started in the mid 1950s by scientists such as Kondo, 
Kröner, Noll, Wang, etc (cf. Maugin, 1993, 2003a). 
 
Remark: All material forces are not translated into useful configurational forces. First 
there are material forces that are but the convection back to the material manifold of 
usual physical forces, such as mass body force 0f  of Newtonian or Lorentzian origin 
which may also be represented by material forces of the type 
 

ext
0 0.ρ= −f f F .  (3.11) 

 
Here we cannot help but 0f is always a function of the actual placement x in physical 
space. True material forces are those material forces that the full material formulation 
(projection onto the material manifold) makes apparent while they did not manifest 
themselves in physical space This is the case of the inhomogeneity force (3.2) as also of 
some material forces due to the nonuniformity of some physical fields on the material 
manifold (e.g., temperature; see below). The case of inertial forces not treated for the 
moment is more subtle because if one can define a material (co-vectorial) momentum P 
by 
 

1
0 0. . ,  .P ρ ρ −= − = = −v F C V V F v ,  (3.12) 
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the inertial force in the physical frame work does not translate directly in an analogous 
inertial force on the material manifold. As a matter of fact, the material inertial force is 
naturally defined as  

( ) ( )Tinertia
0 0. . R

P
t t

∂ ∂ ρ ρ
∂ ∂

⎛ ⎞
= − = − ∇⎜ ⎟

⎝ ⎠
f v F v v , (3.13) 

 
as is easily checked. With 0ρ  depending on X  (case of material inertial 
inhomogeneities), the last term in (3.13) will contribute to both the dynamical 
configurational stress and the dynamical force of inhomogeneity since 

( ) ( )T 2 2
0 0 0

1 1. div
2 2R R R Rρ ρ ρ⎛ ⎞⎛ ⎞ ⎛ ⎞∇ = − ∇⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

v v v 1 v .  (3.14). 

 
 
 
 
 
 
 
- 
- 
- 
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phase-transition front, i.e., a true kinetic law].  

Braun M., (1997), Configurational forces induced by finite-element discretization, Proc. Est. Acad.Sci., 
Math.Phys., 46, 24-31 [This is the work that first remarked on the possibility to exploit the notion of 
spurious material forces to improve FEM computations].  

Bui H.D. (1978),: Mécanique de la Rupture Fragile, Paris: Masson Editeurs, [One of the first books 
dealing with the mathematics of fracture].  

Cherepanov G.P., (1987), Configurational forces in the mechanics of a solid deformable body, P.M.M., 
49, 456-464 [This paper introduces the notion of configurational forces with the help of various 
examples]. 

Christov C.I., Maugin G.A., and Porubov A.V., (2007), On Boussinesq Paradigm in nonlinear wave 
propagation, C.R.Mécanique (special Boussinesq issue), 335, 9/10, 521-535 [This paper exploits the 
notion of quasi-particles and Eshelby stress in the framework of a class of typical nonlinear dispersive 
wave-propagation equations in elastic crystals]. 

Dascalu C. and Maugin G.A., (1993), Forces matérielles et taux de restitution de l’énergie dans les corps 
élastiques homogènes avec défauts, C.R.Acad.Sci.Paris, II-317, 1135-1140 [This work introduced the so-
called “analytical theory of fracture” in elasticity].  

Dascalu C. and Maugin G.A., (1994a), Energy-release Rates and Path-independent Integrals in 
Electroelastic Crack Propagation, Int.J.Engng.Sci., 32, 755-765 [This works presents the notions of 
energy-release rate and J-integral in various formulations of  electroelasticity in finite strains]. 

Dascalu C. and Maugin G.A., (1994b), The Energy of Elastic Defects: A Distributional Approach, 
Proc.Roy.Soc.Lond., A445, 23-37 [This work exploits the notion of distributions (generalized functions) 
to represent configurational forces]. 

Dascalu C., Maugin G.A. and Stolz C., (2008, Editors), Defect and Material Mechanics, (Proceedings 
ISDMM, Aussois, France, 2007), Dordrecht: Springer, [Proceedings of a conference dealing with recent 
advances and the state of the Art in the field as in 2007]. 
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Esptein M. and Maugin G.A., (1990a), Sur le tenseur d’Eshelby en élasticité non 
linéaire,C.R.Acad.Sci.Paris, II-310, 675-8 [Initial note establishing the duality between the quasi-static 
material Eshelby stres and the notion of local rearrangement of matter]. 

Epstein M. and Maugin G.A., (1990b), The energy-momentum tensor and material uniformity In finite 
elasticity, Acta Mechanica, 83, 127-133 [more or less the same as the previously listed paper with 
additional remarks and identities].  

Epstein M. and Maugin G.A., (1995), Thermoelastic material forces: definition and geometric aspects, 
C.R.Acad.Sci.Paris, II-320, 63-68 [This paper introduced the notion of thermal material force in elastic 
conductors of heat]. 

Epstein M. and Maugin G.A., (1997), Notions of material uniformity and inhomogeneity, in: Theoretical 
and Applied Mechanics (ICTAM, Kyoto, 1996), eds. T.Tatsumi, pp.201-215, Amsterdam: Elsevier, [A 
geometrical view of the theory of material uniformity and Inhomogeneity].  

Epstein M. and Maugin G.A., (2000), Thermomechanics of volumetric growth inuniform bodies, 
Int.J.Plasticity, 16, 951-978 [This work presents an original approach to volumetric growth of biological 
tissues involving the notions of Eshelby stress and local rearrangement of matter]. 

Eringen A.C., (1980), Mechanics of Continua, 2nd Revised and augmented edition, Melbourne 
(Florida):Krieger [This is the revised version of a standard textbook on continuum mechanics from the 
1960s]. 

Eringen A.C. and Maugin G.A., (1990), Electrodynamics of Continua, Two volumes, New York: 
Springer-Verlag, [A lengthy treatise on the electrodynamics of continua of solid and fluid types with 
applications to many models]. 

Eshelby J.D., (1951), Force on an Elastic Singularity, Phil.Tran.Roy.Soc.Lond., A244, 87-112 [The 
history making paper by Eshelby deriving the expression of the driving force on a localized material 
inhomogeneity]. 

Fomethe A. and Maugin G.A., (1996), Material Forces in Thermoelastic Ferromagnets, Cont.Mech. & 
Thermodynamics, 8, 275-292 [This work introduces the notion of peculiar material force in deformable 
hard ferromagnets with magnetic spin].  

Germain P., (1972), Shock Waves, Jump Relations and Structures, in: Advances in Applied Mechanics, 
ed. C.S.Yih, pp.131-194, New York: Academic Press [This review contribution devoted to the structure 
of shock waves in fluids makes use of the notion of generator function]. 

Godunov S.K., and Romenskii E.I., (1998), Elements of Continuum Mechanics and Conservation Laws, 
Novossiborsk: Nauchnaya Kniga, (in Russian) [English translation: Elements of continuum mechanics 
and conservation laws, Kluwer, Amsterdam, 2003][This text book is an introduction to continuum 
mechanics and it discusses the hyperbolicity of systems in thermodynamical terms]. 

Grinfeld M.A., (1991), Thermodynamic Methods in the Theory of Heterogeneous Systems, ISIMM 
Series, Harlow, Essex: Longman [This work presents a thermodynamical approach to systems exhibiting 
some material inhomogenities, including the case of mixtures and problems of phase transformation].  

Gurtin M.E., (1979), Energy-release Rate in Quasi-static Crack Propagation,J.of Elasticity, 9, 187-195 [A 
classic paper on the stationary propagation of cracks].  

Gurtin M.E., (1999), Configurational Forces as Basic Concepts of Continuum Physics,New York: 
Springer-Verlag [An original approach to configurational forces based on the postulate of an a priori 
independent balance of configurational forces].  

Ireman P. and Nguyen Quoc Son (2004), Using the gradients of the temperature and internal parameters 
in continuum thermodynamics, C.R.Mécanique (Acad.Sci.Paris),333, 249-255 [A note on the 
thermodynamical admissibility of some gradient models]. 

Kienzler R. and Herrmann G., (2000), Mechanics in material space, Berlin: Springer Verlag [This book 
presents the application of material forces to the solution of problems in the strength of materials of 
structures].  
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Kienzler R. and Maugin G.A., (Eds, 2002), Configurational mechanics of materials (Udine CISM 
Lectures 2001), Wien: Springer-Verlag [Text of lectures delivered in 2001 and giving the state of the Art 
in this field as per that year]. 

Kijowski J. and Magli G., (1998), Unconstrained Hamiltonian Formulation of General Relativity with 
Thermo-elastic Sources, Classical Quantum Grav., 15, 3891-3916 [This works gives relativistic 
expressions that clearly generalize in a four-dimensional formalism some of the notions of the theory of 
material forces]. 

Kivshar Yu.S. and Malomed B.A., (1989), Dynamics of solitons in nearly integrable systems, 
Rev.Modern Phys., 61, 763-915 [This work thoroughly analyzes the role of canonical balance laws in the 
dynamics of solitonic systems and their perturbations]. 

Lardner R.W., (1974), Mathematical theory of dislocations and fracture, University of Toronto Press, 
Toronto [This book presents the mathematical theory of dislocations and fracture in finite and small 
strains].  

Lazar M., (2007), On conservation and balance laws in micromorphic elastodynamics, J.Elasticity, 88, 
63-78 [This work establishes the fundamental physical and material balance laws for the linear theory of 
micromorphic solids]. 

Lazar M. and Anastassiadis C., (2007), Lie point symmetries, conservation and balance laws in linear 
gradient elasticity, J.Elasticity, 88, 5-25 [This work examines the conservation and balance laws in 
gradient elasticity from the view point of Lie groups]. 

Lazar M and Maugin G.A., (2007), On microcontinuum field theories: the Eshelby stress tensor and 
incompatibility conditions, Philosopical Magazine, 87, 3853-3870 [This work examines the various 
microcontinuum theories from the point of view of material balance laws and the generalization of the 
incompatibility theory of Kröner]. 

Le Kh.Chau, (1999), Thermodynamically Based Constitutive Equations for Single Crystals, in: 
Geometry, Continua and Microstructure, pp. 87-97, Ed. G.A.Maugin, Collection Mathématique 
“ Travaux en cours ”, Paris: Hermann Editeurs [This works relates the notion of Eshelby stress to that of 
resolved shear stress in single finitely deformable crystals ].  

Lee J.D. and Chen Y., (2005), Material forces in micromorphic thermoelastic solids, Phil.Mag., 85, 3897-
3910 [This work constructs the notion of material forces in micromorphic solids]. 

Legrain G., (2006), Extension de l’approche X-FEM aux grandes déformations pour la fissuration des 
milieux hyperélastiques, Ph.D. Thesis in Mechanics, Ecole Centrale de Nantes/Université de Nantes 
[This work applies the notion of Eshelby material stress to the behavior in fracture of some polymeric 
materials].  

Lubliner J., (1990), Plasticity, McMillan, New York [A now classic treatise on elasto- plasticity in finite 
strains]..  

Mandel J., (1966), Cours de Mécanique des Milieux Continus, Vol.1, Gauthier-Vilars, Paris [A standard 
graduate course on continuum mechanics delivered at Ecole Polytechnique, Paris, in the years 1960].  

Maugin G.A., (1988), Continuum mechanics of electromagnetic solids, Amsterdam: North-Holland [The 
first comprehensive treatise on finitely-strained electromagnetic solids and their applications (coupled 
linear and nonlinear waves, stability)]. 

Maugin G.A., (1990), Internal variables and Dissipative Structures, J.Non-EquilibriumThermodynamics, 
15, 173-192 [First paper showing that n-th order gradient theories of  

materials can obey thermodynamical admissibility]. 

Maugin G.A., (1992), The Thermomechanics of plasticity and fracture, Cambridge: CUP [An applied 
mathematics textbook on plasticity and fracture exploiting convex analysis]. 

Maugin G.A., (1992b), Pseudo-momentum in Solitonic Elastic Systems,J.Mech.Phys.Solids, 40 
(P.Chadwick Anniversary Volume), 1543-1558 [ First application of the notion of pseudo-momentum 
and Eshelby stress in nonlinear waves in elastic crystals]. 
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Maugin G.A., (1993), Material inhomogeneities in elasticity, London: Chapman and Hall, [A book 
expanding for the first time the notion of material inhomgeneity in relation to that of Eshelby stress and 
its dynamical generalization]. 

Maugin G.A., (1994), Eshelby Stress in Elastoplasticity and Fracture, Int.J.of Plasticity, 10, 393-408 [A 
paper that establishes the correspondence between Eshelby stress and fracture in inelastic bodies]. 

Maugin G.A., (1995), Material Forces: Concepts and applications, ASME Appl.Mech.Rev., 48, 213-245 
[A review paper exhibiting the various facets of the theory of material inhomogeneities as in 1995] 

Maugin G.A., (1997), Thermomechanics of Inhomogeneous-heterogeneous Systems: Application to the 
Irreversible Progress of two and Three-dimensional Defects, ARI (Springer), 50, 41-56 [This work 
establishes the basic thermomechanics governing discontinuity surfaces in terms of the Eshelby material 
stress in more or less complex elastic materials]. 

Maugin G.A., (1998a), On Shock Waves and Phase-transition Fronts in Continua, ARI (Springer), 50, 
141-150 [This works sets forth a thermodynamical theory of transition-fronts and true shock waves on 
the basis of Eshelby’s tensor and a generator function].  

Maugin G.A., (1998b),On the Structure of the Theory of Polar Elasticity, Phil.Trans.Roy.Soc.London, 
A356, 1367-1395 [A systematic application of the notion of material and configurational forces in 
finitely-strained polar (Cosserat) elastic media] 

Maugin G.A., (1998c), Thermomechanics of Forces Driving Singular Point Sets (in Honour of 
H.Zorski’s 70th anniversary), Archives of Mechanics (Poland), 50, 477-487 [This paper exposes the 
continuum thermomechanics of material forces acting on singular points, lines and surfaces].  

Maugin G.A., (1999a), The Thermomechanics of nonlinear irreversible behaviors, Singapore:    World 
Scientific, [A textbook devoted to modern continuum thermodynamics exploiting the notion of internal 
variable of state]. 

Maugin G.A., (1999b), Nonlinear waves in elastic crystals, Oxford: Oxford University Press,  

[This book is devoted to nonlinear waves of different types (shock waves, wave fronts, solitons) in elastic 
crystals and some generalizations].. 

Maugin G.A., (2000a), On the universality of the thermomechanics of forces driving singular sets, 
Arch.Appl.Mech., 70 (Jubilee Volume), 31-45 [This paper aims at establishing the universality of the 
notion of material forces acting on field singularities]. 

Maugin G.A., (2000b), Geometry of Material Space: Its Consequences in Modern Numerical Means, 
Technische Mechanik (Magdeburg), 20, 95-104[This work demonstrates the possible applications of the 
notion of material forces in various computational schemes].  

Maugin G.A., (2002), Remarks on the Eshelbian Thermomechanics of Materials Mech.Res.Commun., 29, 
No.6, 537-542 [This note examines the consequences of Legendre-Fenchel transformations on the 
formulation of material forces].  

Maugin G.A., (2003a), Geometry and thermomechanics of structural rearrangements: Ekkehart Kröner’s 
legacy (GAMM’2002 Kroener’slecture), Z.angew.Math.Mech., 83, 75-83 [This contribution relates the 
general mechanics of configurational forces and the works of the late E.Kröner in defect theory]. 

Maugin G.A., (2003b), Pseudo-plasticity and pseudo-inhomogeneity effects in materials mechanics, 
J.Elasticity, 71, 81-103 [Also in the book: The Rational Spirit in Modern Continuum Mechanics (Essays 
and Papers dedicated to the Memory of Clifford Ambrose Truesdell III) eds. C.-S.Man and R.Fosdick, 
Kluwer, The Netherlands (2004)] [This paper compares so-called pseudo-effects in inhomogeneous 
materials and plasticity with the formulation of configurational and material forces via the notion of local 
rearrangement of matter]. 

Maugin G.A., (2006a), On canonical equations of continuum mechanics, Mech.Res.Commun., 33, 705-
710 [First presentation of canonical energy and momentum conservation laws for any material 
deformable body] 
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Maugin G.A., (2006b), On the thermodynamics of continuous media with diffusion and/or weak 
nonlocality, Arch.Appl.Mech. (75th Anniversary Volume), 75, 723-738 [A development of the previous 
paper including generalized nontrivial cases].  

Maugin G.A. and Berezovski A., (2004), Introduction to the thermomechanics of configurational forces, 
Atti Accad.Pel.dei Pericl. Class I, Vol.LXXXI-LXXXII, (2004) [A condensed view on the 
thermomechanics of configurational forces]. 

Maugin G.A. and Christov C., (2001), Nonlinear Waves and Conservation Laws (Nonlinear Duality 
Between Elastic waves and Quasi-particles), in: Topics in Nonlinear Wave Mechanics, eds. C.I.Christov 
and A.Guran, pp.117-160, Boston: Birkhauser [This contribution presents the application of the notion of 
canonical momentum, Eshelby stress and quasi-particles in different continuous systems]. 

Maugin G.A. and Epstein M., (1991), The Electroelastic Energy-momentum tensor,Proc.Roy.Soc.Lond., 
A433, 299-312 [Application of the notions of Eshelby stress and local material rearrangement in finite-
strain electroelasticity]. 

Maugin G.A. and Trimarco C., (1992), Pseudo-momentum and Material Forces in Nonlinear    Elasticity: 
Variational Formulations and Application to Brittle Fracture, Acta Mechanica, 94, 1-28 [One of the 
original papers reviving the notion of material forces in first and second-gradient elasticity and fracture 
on a variational basis]. 

Maugin G.A. and Trimarco C., (1995b), On Material and Physical Forces in Liquid Crystals,   
Int.J.Engng.Sci., 33, 1663-1678 [This work discusses the notion of material force in liquid crystals where 
there exists some ambiguity in definitions]. 

Maugin G.A. and Trimarco C., (1997), Driving Force on Phase-transition Fronts in Thermoelectroelastic 
Crystals, Mathematics and Mechanics of Solids, 2, 199-214 [This work studies the driving force on 
phase-ttansition fronts in deformable electroelastic bodies].  

Micunovic M;, (1974), A geometrical treatment of thermoelasticity of simple inhomogeneous bodies: I - 
Geometric and kinematic relations, II –Constitutive equations, III Approximations, Bull.Acad.Polon. 
Sci.Sér.Sci.Techn., 22, 579-588, 633-641, 23, 89-97 (1975) [These works exploit a multiplicative 
decomposition of finite strain in thermoelasticity].  

Miehe C., Gürses E. and Brirkle M., (2007), A computational framework of configurational force-driven 
brittle fracture based on incremental energy minimization, Int.J.Fracture, 145/4, 245-259 [This work 
presents a sophisticated professional approach to the exploitation of configurational forces in 
computational fracture].  

Müller I. and Ruggeri T., (1993), Extended thermodynamics, New York: Springer [A comprehensive 
exposition of the notion of extended thermodynamics by some of its creators]. 

Mueller R., Kolling S. and Gross D., (2002), On Configurational Forces in the Context of the Finite-
Element Method, Int.J.Num.Meth.Engng., 53, 1557-1574 [Professional Application of the notion of 
configurational forces in FEM computations in structures]. 

Mueller R. and Maugin G.A., (2002), On Material Forces and Finite Element Discretizations. 
Computational Mechanics, 29, No.1, 52-60 [The original paper with applications relating FEM 
computations to the concept of configurational forces]. 

Mueller R., Maugin G.A. and Gross D., (2003), Material Forces Induced by Finite-element  
Discretizations, in: Proc. Intern.Conf.on Advanced Problems in Mechanics, St Petersburg, June 2002, 
pp.495-500, IPME-RAS, St-Petersburg [This work gives examples of material-force distributions in FEM 
implementataion].  

Muschik W. and Berezovski A., (2004), Thermodynamic interaction between two dissipative  systems in 
non-equilibrium, J.Non-Equilibr.Thermodyn., 29, 237-2555 [This work  formulates the bases of the 
thermodynamical exchanges between continuum Schottky systems]. 

Noether W., (1918), Invariante Variationsproblem, Klg-Ges.Wiss.Nach.Göttingen. Math.Phys., Kl.2, 235 
[The original introduction of Noether’s theorem by its author]. 
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Olver P.J., (1986), Application of Lie groups to differential equations, New York: Springer [A treatise on 
Lie groups for professionals].  

Peach M.O., and Koehler J.S., (1950), Force Exerted on Dislocations and the Stress Produced by Them, 
Phys.Rev., II-80, 436-439 [The pioneering paper introducing the so-called Peach-Koehler force]. 

Piola G., (1836), Nuovo analisi per tutte le questioni della meccanica moleculare, Mem.   
Mat.Fis.Soc.Ital.Modena, 21 (1835), 155-321 [and Piola G., (1848), Intorno alle equazioni   fondamentali 
del movimento di corpi qualsivoglioni considerati la naturale forma e costituva, ibid, 24(1), 1-186 ] 
[These are the pioneering papers of the author introducing the Piola transformation and variational 
formulations in the manner of Lagrange]  

Rakatomanana L.R., (2004), A geometric approach to thermomechanics of dissipating continua, Boston: 
Birkhäuser [This book develops an original viewpoint on bodies that are everywhere dislocated].  

Rice J.R., (1968), Path-independent Integral and the Approximate Analysis of Strain Concentrations by 
Notches and Cracks, Trans.ASME.J.Appl.Mech., 33, 379-385 [This paper introduces the celebrated J-
integral of fracture theory]. 

Soper D.A., (1976), Classical theory of fields, New York: Academic Press [A standard textbook on field 
theory at the undergraduate/graduate level].  

Steinmannn P., Ackermann D. and Bartel F.J., (2001), Application of material forces to hyperelastic 
fracture mechanics -Part II: Computational setting, Int.J. Solids Structures, 38, 5509-5526 [This work 
demonstrates the power of the notion of material forces in performing computations on hyperelastic 
structures by the FEM]. 

Steinmann P. and Maugin G.A., (Editors, 2005), Mechanics of Material Forces (Proc.EUROMECH 
Colloq., Kaiserslautern, 2003),New York: Springer [Proceedings of a fruitful scientific colloquium 
devoted to configurational forces].  

Stolz C., (1989), Sur la propagation d’une ligne de discontinuité et la fonction génératrice de choc pour 
un solide anélastique, C.R.Acad.Sci.Paris, II-307, 1997-2000 [This paper introduces the notion of 
generator function for discontinuity surfaces].  

Stolz C., (1994), Sur le problème d’évolution thermomécanique des solides à changement brutal des 
caractéristiques, C.R.Acad.Sci.Paris, II-318, 1425-1428 [This note gives the essential of the mathematical 
problem of evolution for propagating discontinuities].  

Trimarco C. and Maugin G.A. (2002), Material mechanics of electromagnetic solids, in: Configurational 
mechanics of materials, Eds. R.Kienzler and G.A.Maugin, pp.129-171, Wien: Springer, [Lecture notes 
devoted to configurational forces in electromagnetic solids]. 

Truesdell C.A., and Noll W., (1965), Nonlinear Field Theories of Mechanics, in: Handbuch der Physik, 
Bd.III/3, ed.S.Flügge, Berlin: Springer-Verlag, [A classic encyclopedia for 20th century continuum 
mechanics]. 

Truesdell C.A., and Toupin R.A., (1960), The Classical Theory of Fields, in: Handbuch der Physik, 
Bd.III/1, ed.S.Flügge, Berlin:Springer-Verlag,[A forerunner of the preceding reference]. 

Truskinovsky L., (1994), About the Normal Growth Approximation in the Dynamical Theory of Phase 
Transitions, Cont.Mech.& Thermodynam. 6, 185-208 [This paper derives a kinetic law for phase-
transition fronts for a dissipative front of nonzero thickness].  
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applied mathematics. His research interests include the electrodynamics of deformable continua, surface 
waves, the thermomechanics of continua, the theory of material defects, nonlinear waves and, more 
generally, nonlinear phenomena in crystal physics and mechanobiology.  
 
 
 


