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Summary 
 

This chapter provides a brief overview of current approaches and anticipated advances 

in obtaining a range of field measurements for sea ice in (sub)polar regions. The 

multiple uses of the ice cover and its important role in social-environmental systems at 
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high northern and southern latitudes require a broad range of approaches and 

measurements to be considered. Building on a recently published monograph with 

detailed information about the state of the art, the present contributions provides concise 

summaries and updates for the following topical areas: Field research study and 

sampling design, snow on sea ice, ice thickness and morphology, ice coring and 

measurement of key physical properties, ice optics and surface energy budget, transport 

properties, sea ice biota and biogeochemical properties, autonomous sensors, UASs and 

UAVs, and ship-based observations. For each of these topics, relevant background 

information is provided before discussing key methodological approaches and 

techniques in more detail. Most of the topical sections then include an example to 

illustrate how the approaches are applied in specific cases. Each section then concludes 

with a outlook on future developments and research needs. Common to all types of field 

measurements is the conclusion that due to a substantial increase in human activities in 

ice-covered maritime regions and the impacts of rapid environmental change a great 

need for accurate, consistent and intercomparable sea-ice datasets has arisen. 

Methodological advances and scientific progress over the past few decades now puts the 

research and operations community in a position to develop best practices with respect 

to field measurements that can lead to standardized, interoperable approaches, greatly 

minimizing risks associated with lack of suitable, consistent datasets.  

 

1. Introduction 

 

Polar and subpolar sea ice plays an important role in regulating Earth’s climate, in 

particular as a key factor in the global surface radiation budget and its impact on global 

thermohaline circulation. Moreover, sea ice is an important habitat for a range of 

organisms, from microscopic algae to ice-associated mammals such as seals, walrus and 

polar bear. Finally, the past decade has brought increasing recognition of the importance 

of sea ice as a social-environmental system, i.e., interconnected geophysical features 

and processes that support or threaten a wide variety of human activities and provide 

services to people and ecosystems. In the Arctic, a major transformation of the ice pack 

has been underway for the past three decades. Not only has the total sea-ice volume 

been reduced by more than a factor of three, but at the same time perennial ice which 

occupied much of the Arctic Ocean well into the 1990s, has been reduced by more than 

half. With large parts of the Arctic shelf seas ice-free for much of the summer as a result 

of these changes, maritime shipping and offshore resource development have been on 

the rise.  

 

These developments have spurred an increasing interest in and need for sea-ice research 

both in the Arctic and Antarctic. Field-based observations and measurement campaigns, 

in particular, serve to improve our understanding of important sea-ice processes, help 

keep track of the changing polar ice covers and complement remote sensing and 

modeling studies. This contribution provides a brief survey and overview of the sea-ice 

field measurement techniques relevant in this broader context. Given the broad scope of 

research relevant to the study of sea ice as a social-environmental system, a summary 

such as this can only scratch the surface. The team of contributors for this chapter has 

been guided by a few key considerations in selecting material for this chapter. First, the 

intent was to provide an overview of the breadth of techniques and approaches relevant 

to different disciplines so as to provide a framework and key references for further 
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reading to obtain more in-depth information on the details of some of the techniques. 

Second, we have focused on fundamental sampling or measurement approaches that are 

relevant for a broad range of studies, such as measurements of ice thickness or the 

extraction of ice-core samples. Third, we build on a comprehensive compilation and 

overview of sea-ice field techniques published in 2009 (Field Techniques for Sea-Ice 

Research, University of Alaska Press) and see the present contribution as an update of 

that latter publication.  

 

Figure 1. TerraSAR-X satellite scene (courtesy of DLR, Germany) for Barrow region on 

1 May 2013. Also shown are thickness profiles, obtained with an EM-31 (see Section 4) 

along ice trails put in place by Iñupiat hunters from Barrow (data and map compiled by 

D. O. Dammann, University of Alaska Fairbanks). This map was compiled to serve 

information needs by the community of Barrow, including hunters, Barrow Search and 

Rescue and others. To ensure utility of the map, distances and thicknesses are provided 

in imperial units. 
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A further important consideration in compiling the material for this chapter is the 

recognition of an increasing need for development of best practices and standardized, 

interoperable approaches for sea-ice field techniques that allow for an interpretation of a 

given data set in different contexts or for the integration of different types of 

measurements into a common framework. For example, ship-based observations of ice 

conditions in both Polar Regions may be of value in validating or possibly constraining 

sea-ice predictions and model simulations. They can serve a similar purpose in the 

development and validation of sea-ice remote sensing algorithms. However, such 

multiple uses of data require standardized, interoperable approaches in the collection of 

such data, as well as clear guidance from the different data user communities as to the 

relative merits of different types of observations. The present contribution highlights a 

few key areas where progress along these lines is both needed and tractable. As an 

illustration of such multiple use applications, consider Figure 1 which provides 

information on the distribution and shape of community ice trails across the shorefast 

ice, as well as the thickness profile of the underlying ice. This information is placed in 

the context of a synthetic aperture radar (SAR) satellite scene to provide information 

about the larger-scale ice conditions at high resolution. While the primary purpose of 

the map is to provide information to the local community, including local search and 

rescue services, the underlying data are also collected to better understand long-term 

variations in shorefast ice mass budget and roughness. 

 

Each of the main sections of this chapter follows a similar layout that provides a brief 

summary of relevant background, reviews the key approaches and techniques, discusses 

an example application to illustrate specific applications and then examines potential 

future developments and research needs. 

 

2. Field Research Study and Sampling Design 
 

Common to all approaches described in subsequent sections in this chapter is the need 

to carefully consider the sampling or study design prior to commencing work in the 

field. While this is a broad topic that cannot be covered in detail, we illustrate a few key 

concepts below for a case study related to sampling shorefast sea ice. In brief, study 

design can help address important challenges and questions that are relevant for a broad 

range of sea-ice field work. These include, (1) the need to ensure that the sampled ice is 

representative of the process or property of interest in the study, which may target a 

specific ice type, aspects of the ice growth, melt and deformation history or focus on 

environmental factors constraining ice formation and evolution, such as the local 

hydrography, microclimate etc.; (2) the question of the extent to which a field site or 

particular period of study is representative of large-scale or long-term conditions; (3) the 

magnitude of spatial and temporal variability in ice properties and its impact on 

sampling or measurement errors. 

 

Remote sensing, from space-based, airborne or ground-based sensors plays an important 

role in the compilation of data that can guide study design. Thus, remote sensing is the 

method of choice to scale up or down from a specific set of measurements, providing, 

for example, a regional context for local, point-based measurements. The aggregate 

nature of a sea-ice cover, typically comprising ice of different age, roughness and snow 

cover, requires such an approach to quantify key variables, such as the heat flux through 
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the ice, and to evaluate the relative contribution of different ice types and processes to a 

regionally averaged assessment of, e.g., heat exchange. Remote sensing can also 

provide important information on the ice evolution from initial freeze-up to the final 

stages of decay. Some of this information is not easily obtained from surface-based 

measurements and can complement the latter. Finally, remote sensing is of key 

importance in the design of spatially explict sampling strategies, as well as from the 

perspective of field safety and logistics.  

 

Another important source of information relevant to study design is the application of 

model simulations. For example, ice-growth modeling can provide important insight 

into the origins of spatial and temporal variations in ice properties while at the same 

time help constrain the age of ice horizons at different depths within an ice core. 

Finally, study design and site selection can benefit substantially from guidance by local 

and/or indigenous knowledge-holders. Often referred to as Traditional Ecological 

Knowledge or Traditional Environmental Knowledge (TEK) or Local and Indigenous 

Knowledge (LIK), such bodies of knowledge may provide a wealth of information on 

spatial and temporal variability of relevant ice properties or processes, inter-annual 

variability and trends, or on the potential occurrence of anomalies. Moreover, from a 

field safety perspective, inclusion of local or indigenous experts in the study design 

process and field work itself is of substantial benefit. 

 

Let us consider a specific case study to illustrate some of these approaches and provide 

more detail on relevant methods. An interdisciplinary sea-ice sampling program is 

targeting shorefast ice near Barrow, Alaska to obtain information about key ice physical 

properties as well as the amount of microalgal biomass and plant nutrients present 

within the ice cover. Indigenous knowledge for the region and satellite remote sensing 

data, in particular SAR (with a high resolution of better than 10 m as well as the 

prerequisite temporal and regional coverage independent of cloud cover) shown in 

Figure 1, obtained for that particular year indicated that ice in relatively close proximity 

to the field laboratory (NARL) was broadly representative of shorefast ice in the wider 

region. Such high-resolution imagery can be placed in a broader temporal and spatial 

context by passive microwave satellite data, in particular the Special Scanner 

Microwave/Imager (SSM/I), collected at a much coarser resolution of around 25 km, 

but on a daily basis over periods of decades. Visible and thermal-infrared range satellite 

images such as from the Moderate Resolution Imaging Spectrometer (MODIS) can 

provide information at intermediate scales but are weather and/or illumination 

dependent. 

 

A sampling plan to obtain ice cores through the entire thickness of the ice (see Section 

5) now has to identify specific locations. For most studies, the most appropriate 

sampling approach may be termed a segmented stratified random sampling scheme, 

which is illustrated in Figure. 2. Thus, by evaluating the distribution of different surface 

roughness, ice deformation and snow distribution patterns in the visible-range satellite 

scene and aerial photograph shown in Figure 2, different ice types and growth histories 

can be identified. A shore-based coastal marine radar and SAR imagery collected prior 

to the sampling campaign provided further information on the key ice type categories. 

Such an informal classification helped segment the ice cover into the key ice types to be 

sampled. Within these subregions, stratified random samples were now to be taken. 
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Here, stratification refers to a subdivision of the entire area of interest into subplots. 

Within each of these, a random location is identified for sampling, as illustrated at 

bottom right in Figure 2. Here, quadratic subunits, parallel to the coastline and 

prevailing currents and ice deformation features, are chosen for convenience, but a 

segmented scene may well consist of irregular units that are further subdivided. The 

four coring locations shown in the figure would then yield intercomparable samples for 

the same ice type. The spatial variability in key ice properties that can be expected for 

such a set of samples is further discussed in Section 5.  
 

 
 

 
 

Figure 2. Low-resolution false-color visible-range satellite image obtained from a 

Digital Globe satellite scene for 16 March 2013, covering part of the Naval Arctic 

Research Laboratory (NARL) complex at Barrow, AK along with a stretch of shorefast 

ice and adjacent open ocean (top; North is up). The red rectangle delineates the extent of 

the aerial photograph shown in the lower left. This area of interest roughly corresponds 

to the trail shown in Figure 1 to the left of the NARL site northeast of the town of 

Barrow. The black quadrangles are approximately 80 m to a side and delineate the 

sampling regions shown in the photos below. Aerial photograph (bottom left; courtesy 

of S. Hendricks, Alfred Wegener Institute) for 3 April 2013 of subset of scene shown at 

top, showing ice of different growth and deformation history (A: new ice formed 

between 16 March and 3 April; B: rough, rubbled ice close to former shorefast ice edge 

in top figure; C: level, undeformed shorefast ice of intermediate age; D: rough ice with 

roughly shore-parallel pressure ridges; E: level, undeformed shorefast ice formed during 

early stages of freeze-up). Detail of quadrangle C, along with randomly chosen 

sampling sites in four sub-areas shown at bottom right. 
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3. Snow on Sea Ice 

 

3.1. Background 

 

Almost all sea ice in the Arctic and Antarctic is covered with snow. Even new ice 

rapidly acquires a snow cover due to precipitation or accumulation of blowing snow. 

Through its contrasting thermal, optical, and dielectric properties, the snow cover 

dominates the surface properties of ice-covered oceans, and hence it is of outstanding 

importance for the underlying sea ice. It strongly influences the energy and mass 

balance and determines most interactions between sea ice and the atmosphere. In the 

Arctic, snow on sea ice typically persists from September to June, and melts completely 

during summer, leaving behind a characteristic mixture of melt ponds and bare ice. In 

contrast, snow on Antarctic sea ice – which is typically much deeper and with lower 

water content in summer than Arctic snow – mostly survives summer melt, at least as 

long as the sea ice underneath survives the melt season. 

 

Temperature, grain size, and wetness (liquid water content) of snow on sea ice are 

initially prescribed by the boundary conditions of air and ice surface temperatures. In 

addition, wind speed at the time of snowfall and thereafter as well as the sequence of 

accumulation events control the layering and density structure of the snow cover. 

Afterwards, changes in atmospheric conditions and additional accumulation dominate 

the evolution of recent snow layers. With time, snow grains and layering change as a 

result of metamorphism, mostly driven by temperature, temperature gradients, liquid 

water content, and mechanical forces due to overburden and density distributions. It has 

to be noted that most metamorphisms are irreversible, impacting the stratigraphy (layer 

sequence and properties) of the snow cover. The accumulation history and 

metamorphism cause strong vertical and horizontal variations in the physical properties 

of snow. It is of great importance to explicitly consider snow properties and processes 

when studying sea ice on different scales and with different methods. In that respect, the 

four most important aspects about snow on sea ice are  

(1) its thermal properties, impacting sea ice mass balance and temperatures by acting as 

a strong insulator between ice and atmosphere;  

(2) its ability to strongly scatter light, reflecting most of solar irradiance back to the 

atmosphere with only little energy transmitted into the sea ice and the ocean 

underneath. This aspect also has strong implications for high latitude ecosystems, as 

well as biological and biogeochemical processes;  

(3) its role in the freshwater budget, through transport, accumulation, and melt; 

(4) its dielectric properties and mass distribution, strongly affecting remote sensing 

(airborne and satellite) applications. 

 

3.2. Key Approaches and Techniques 

 

A most comprehensive review of the current knowledge about snow on sea ice is 

provided in key references compiled at the end of this chapter. In addition, a chapter by 

Sturm in the previously published field techniques monograph gives detailed 

descriptions of methods to obtain snow properties and related observations. Direct 

measurement of most snow properties can be difficult and/or time-consuming. In 

general, snow observations are made by  
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(1) digging snow pits to reveal the stratigraphy and information about layer properties. 

In addition, snow samples may be taken that way; 

(2) performing in-situ measurements along transects to cover spatial variability and 

obtain distribution functions of physical properties; 

(3) remote sensing operations from air planes or satellites (passive and active 

microwave methods) to map large-scale properties or imagery. 

 

In addition the timing of measurements is – in contrast with many other sea ice 

properties – most critical, since many properties underlay strong diurnal variations. 

Snow depth, density, and stratigraphy are the more easily, and hence most often 

observed properties. The optical properties of snow and sea ice are discussed in Section 

6.  

 

Snow depth is often also the only snow property that is available from field 

measurements, because it may be obtained either along transects or through remote 

observations. Snow depth measurements are as easy as using a ruler to measure the 

distance from the sea-ice surface to the top of the snow cover. More advanced are 

measurements using a Magna Probe, which automatically records snow depth 

measurements together with GPS data. Autonomous snow depth measurements, e.g., for 

high-resolution time series, may be performed through sonic range finders or from 

thermistor measurements. This technique is frequently applied on buoys, such as ice 

mass-balance buoys (Section 9).  

 

The stratigraphy of a snow pack describes the sequence of snow layers, within which its 

physical properties are (assumed to be) constant. Measuring physical properties of 

individual snow layers is most time consuming and is performed in snow pits.  

 

Stratigraphy observations mostly consist of: 

 Temperature measurements in vertical profiles with needle probes. Alternatively, 

snow temperatures may be obtained from thermistor chains, but these measurements 

may easily by impacted by absorption of solar radiation. 

 Density is typically measured by volumetric measurements, when samples of 

defined volumes are extracted and weighed. Alternatively, capacitive measurements 

are possible, making use of the density dependence of dielectric properties. Using 

capacitive measurements, the liquid water (wetness) content of snow may be derived 

as well.  

 Grain size and shape of snow crystals is usually determined with a lens on a mm-

grid. Grain shape is classified based on reference tables, which mostly represent its 

genesis and status of metamorphism, and have been developed as part of an 

international classification of snow on the ground. In an experimental state are 

satellite based grain size retrieval algorithms, which exploit the spectral scattering 

reflection characteristics of the snow layer.  

 Snow hardness is classified based on an empirical scale. 

 For salinity measurements a sample (often the density sample) is melted and then 

electrical conductivity is measured and transferred into salinity. 
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