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Summary 
 
Environmental energy sources abound in our immediate surroundings. Energy 
harvesting is a physical process by which the energy is collected from the environment. 
Examples of such energy sources include light, thermal gradients, vibrations, 
electromagnetic wave, etc. Harvesting electrical power from environmental energy 
sources is an attractive and increasingly feasible option for several micro-scale 
electronic systems such as biomedical implants and wireless sensor nodes that need to 
operate autonomously for long periods of time (months to years).  
 
However, designing highly efficient micro-scale energy harvesting systems requires an 
in-depth understanding of various design considerations and tradeoffs. This book 
chapter provides an overview of the area of micro-scale energy harvesting and discusses 
the various challenges and considerations involved from a design perspective. 
 



UNESCO - E
OLS

S

SAMPLE
 C

HAPTERS

CIRCUITS AND SYSTEMS - Micro-Scale Energy Harvesting - Chao Lu, Vijay Raghunathan and Kaushik Roy 

 

©Encyclopedia of Life Support Systems (EOLSS) 

 

1. Introduction 
 
As the world is more and more concerned with fossil fuel exhaustion and environmental 
problems caused by conventional power generation, renewable resources are becoming 
a focal point of the environmental movement, both politically and economically. 
Environmental energy sources abound in our immediate surroundings. Energy 
harvesting is a physical process by which the energy is collected from the environment. 
Examples of such energy sources include light, thermal gradients, vibrations, 
electromagnetic wave, etc. Harvesting energy from the surrounding environment is of 
growing interest to the research community, but in practice, design challenges limits its 
viability and ability to penetrate the market. 
 
Nowadays, rapid advances in computing, communication, and integration has resulted 
in the emergence of a new class of ultra-low power applications. Examples of such 
systems include wearable or implantable biomedical devices [Yazicioglu 2009], 
wireless sensor nodes [Raghunathan 2004], etc. These systems are often required to 
operate for several months to years without the need of battery replacement, because 
frequent battery replacement may be infeasible (e.g., for biomedical implants) or 
prohibitively expensive (e.g., in a large sensor network). Energy storage element, e.g. 
battery, is extensively used for powering electronic systems. However, since the volume 
permitted for battery integration in these miniaturized systems is quite tiny (and hence 
very limited energy capacity), the energy storage element will be quickly depleted after 
a short time of system operating and these systems will become useless. Frequent 
battery replacement is impractical in these micro systems, since it is prohibitively 
expensive for large wireless sensor network that consist of hundreds to thousands of 
spatially distributed autonomous micro-sensor nodes, or it often requires invasive 
surgery (e.g., pacemaker batteries need to be replaced every six to seven years, on 
average). Loss of power in a biomedical implant due to a depleted energy storage 
element can have serious and potentially life threatening consequences. As a result, one 
key challenge in these systems is to conveniently provide the required power for long-
lived, maintenance-free operation.  
 
Environmental energy harvesting is an attractive option to alleviate the power supply 
challenge in these systems [Mateu 2005; Raghunathan 2005]. Examples of ambient 
energy sources are light, thermal, fuel, vibration, radio frequency waves, etc. While the 
basic idea of environmental energy harvesting has been extensively explored and 
applied at the macro-scale in the context of large systems such as solar farms, 
windmills, etc., designing micro-scale energy harvesting systems involves several new 
challenges. Most of these challenges stem from the fact that the form-factor constraint 
in these systems mandates the use of miniature energy transducers (a few cm3). As a 
result, the maximum power output of these micro-scale transducers is extremely small, 
often only a few mW. Therefore, the harvesting subsystem should be carefully designed 
to extract as much power as possible from the energy transducer and transfer it to the 
electronic system with minimal loss, which requires extremely energy efficient design 
techniques. Energy harvesting is an alternative method of providing power to these 
micro systems and has the potential to result in perpetual operation. This book chapter 
presents an overview of the various circuit design considerations and techniques 
involved in designing energy-efficient micro-scale energy harvesting systems. 
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In addition, energy harvesting also provides significant environmental benefits. For 
example, the large number of batteries discarded in solid waste landfills represents a 
long-term threat to groundwater and drinking water supplies due to heavy metal (e.g., 
mercury, cadmium) leakage. The use of energy harvesting in micro systems 
significantly prolongs overall battery life and in some cases, eliminates the dependence 
on batteries, and thus, directly contributes towards mitigating this problem.  
 
Figure 1 shows the generic block diagram of a micro-scale energy harvesting system. It 
consists of five blocks: the micro scale energy transducer, the power converter, the 
control unit, the energy buffer, and the application unit. The energy transducer converts 
ambient energy into electrical energy, which is stored in the energy buffer (a 
rechargeable battery or a super capacitor) for powering the application unit (e.g., sensor 
node or biomedical implant). The energy transducer may be based on one energy 
conversion mechanism or a hybrid heterogeneous combination. The control unit plays a 
crucial role in maximizing overall system efficiency. It produces the required control 
signals for the entire system and ensures maximum power point (MPP) operation at all 
times by running a MPP tracking scheme. The goal of the power converter is to extract 
as much power ( SP ) as possible from the energy transducer and pass on as much of it as 
possible ( EBP ) to the output. In this chapter, each building block will be addressed and 
discussed in the following sections. 
 

 
 

Figure 1. Block diagram of a micro scale energy harvesting system 
 
The rest of this chapter is organized as follows. In Section 2, we briefly review the basic 
device physics and characterize the electrical behavior of various energy transducers. 
Design considerations and research progresses for energy-efficient power converters are 
introduced in Section 3. In order to enhance the charge transfer capability from ultra 
low voltage energy transducers, a tree topology charge pump is analyzed and discussed 
thoroughly. In Section 4, the previously proposed MPP tracking approaches are 
classified and addressed, followed by a discussion of harvesting-aware application unit 
design in Section 5. Finally, the conclusion is given in Section 6. 
 
2. Energy Transducer Characterization 
 
Environmental energy sources are ubiquitous in our immediate surroundings. Examples 
of such energy sources include solar radiation, air flow, mechanical motion/vibration, 
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thermal gradients, radio frequency (RF) transmissions, etc. A variety of micro-scale 
energy transducers have been developed to convert energy from other modalities into 
electrical energy [Choi 2006; Chu 2006; Egbert 2007]. The dominant characteristic of 
energy transducers is their power density (Watt/cm3). This is because transducers will 
never run out of energy (barring any hardware failures) as long as the environmental 
energy source is present, and hence, cannot be viewed as conventional capacity-limited 
energy sources (i.e., battery).  
 
Table 1 shows the estimated power densities of a few commonly used energy-
harvesting modalities [Raghunathan 2005]. While there has been (continues to be) 
extensive research from the device perspective to improve the cost, conversion 
efficiency, and power density of transducers, it is crucial for system designers to be 
aware of their electrical characteristics in-depth in order to understand their impact on 
the system being powered. Although various physical or mathematical models have 
been proposed to characterize micro scale energy transducers, these models are 
cumbersome, computationally intensive, and incompatible with circuit design or 
simulation software (e.g. Cadence or SPICE). Hence, in the remainder of this section, 
we provide an overview of various energy-harvesting modalities and describe how some 
of these transducers can be modeled from electrical perspective. 

 
Harvesting technology Power density 

Solar cells (outdoors at noon) 15mW/cm3 
Piezoelectric (shoe inserts) 330μW/cm3 

Vibration (small microwave oven) 116μW/cm3 
Thermoelectric (10°C gradient) 40μW/cm3 

Acoustic noise (100dB) 960nW/cm3 
 

Table 1. Power densities of various energy harvesting modalities 
 
2.1 Micro Photovoltaic Module 
 
A photovoltaic (PV) cell is a device that converts the light energy directly into 
electricity by the photovoltaic effect. It is useful to create an electrically equivalent 
model that is SPICE-compatible. This model facilitates the design of remaining system 
building blocks (e.g. power converter or control unit) and enables system-level 
simulations and verification. This SPICE-compatible model allows system designers to 
simulate and observe the matching status between a power converter and an energy 
transducer. 
 
Figure 2 shows the equivalent electrical circuit model of a micro PV module [Lu 
2010b], which is composed mainly of a current source and a forward biased diode. 

PH,SCI  is the generated photocurrent by photovoltaic conversion, SR  is the parasitic 
series resistance, and PR  is the equivalent shunt resistance. PHI  and PHV  are the output 
current and terminal voltage of the PV module, respectively. 
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Figure 2. The electrical model of a PV module 
 
Based on the circuit shown in Figure 2, the output current ( PHI ) and power ( PHP ) of a 
PV module can be expressed as 
 

PH PH S( )
PH PH S

PH PH,SC SAT PH PH PH
P

1    
q V I R

AKT V I RI I I e P I V
R

+⎧ ⎫ +
= − − − =⎨ ⎬

⎩ ⎭
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Here, SATI  is the reverse saturation current, q  is the electron charge, A is a dimensional 
factor, K is the Boltzmann constant, and T is the operating temperature. We conducted 
experiments using a commercial PV module (Model #1-100, SolarWorld Inc.) to 
validate this model. The PV module was characterized under weak light (indoor) 
conditions. The PV module was illuminated using a 40-Watt light bulb and the distance 
between them was adjusted to emulate changing light conditions. Various resistive 
loads were connected to the PV module and the output voltage and current were 
measured. Figure 3(a) plots the I-V curve of the PV module obtained using Eq. (1) and 
measured experimentally. We can see that the measured PHI  values fit well with the 
values predicted by the electrical model. 
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Figure 3. (a) Measured I-V characteristic of a PV module (b) Output power vs. PV 

terminal voltage of a PV module 
 

Figure 3(b) plots the output power ( PHP ) of the PV module as a function of its terminal 
voltage. As is evident from the figure, for a given light irradiance, there exists an 
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optimal output voltage ( MPPV ) for the PV module at which PHP  is maximized (e.g., 
0.29V for 784LUX). This point on the I-V curve is the MPP. Note that the MPP changes 
significantly as the light intensity changes. The goal of MPP tracking schemes is to 
ensure that the PV module operates at its MPP at any given time. It can also be seen in 
Figure 3(b) that the harvested power is very limited (in the range of several hundred µW 
to 1.1mW). Obviously, we would like as much of this power as possible to be available 
to the load. Therefore, the power budget for an MPP tracking scheme in such a system 
is severely constrained (e.g., at most a few µW), which requires the MPP tracking sub-
system to be very carefully designed. 
 
2.2 Micro Thermoelectric Generator 
 
Micro TEGs are scalable, reliable and do not require any moving parts like vibration 
energy transducers. As a consequence, it is very appealing in micro scale energy 
harvesting systems, such as human body powered biomedical devices. Micro TEGs 
typically consist of multiple couples of p-type and n-type thermoelectric legs, which can 
output electrical energy by employing the temperature gradient between the hot surface 
(e.g., human body) and the cold surface (e.g., ambient air). These thermocouples are 
usually connected electrically in series and thermally in parallel to effectively make use 
of the limited surface area. When there is a temperature difference across a µTEG, 
seebeck effect causes the moving of charged carriers to generate a terminal voltage. 
Figure 4 illustrates the operation mechanism of a µTEG. The top layer of the µTEG is 
attached to a heat surface, while the bottom layer is placed near a cool surface. Due to 
the temperature difference, the electrons (or holes) in the N-type (or P-type) material 
flow towards the cool surface and forms a current.  
 

 
 

Figure 4. Illustration of operation mechanism of a µTEG 
 
In [Egbert 2007], the figure of merit (FOM) of a micro TEG is defined as 
 

2

Z α
λρ

=  (2) 

 
Here α  is the seebeck coefficient that is material dependent, λ  is the thermal 
conductivity, and ρ  is the electrical resistivity. Improving the FOM from a device or 
material perspective is one area of active research in thermoelectric community.  
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Micropelt MPG-D751 is a good example of small scale TEG devices. The current and 
voltage values for different TΔ  across it were obtained by the simulation tool supported 
by the manufacturer and were plotted in Figure 5. The output power varies as a function 
of output voltage for different TΔ . The maximum output power is maintained when its 
output voltage is around half of the open circuit voltages (i.e. 0.31V for 4T KΔ = , 
0.23V for 3T KΔ = ). The open circuit voltage of a TEG is proportional to the number 
of leg pairs, the actual temperature difference TΔ  and the seebeck coefficient α , as 
shown in the equation below: 
 

OC LEGPAIRS  V N Tα= × ×Δ  (3) 
 
We can see that a TEG can be modeled as a voltage source in series with an internal 
resistor with the voltage source being proportional to TΔ . Such a model can be 
expressed using Eqs. (4) and (5), where β is a constant (i.e., internal resistor). 
 

TEG OC TEGV V Iβ= −  (4) 
 

TEG TEG TEG TEG OC TEGP ( )V I V V V β= = −  (5) 
 

 
 

Figure 5. Simulation results of TEG MPG-D751 (ΔT=1~4K) 
 
2.3 Micro Fuel Cell 
 
Micro Fuel cell (µFC) is a viable alternative power source that converts fuel energy into 
electrical energy by chemical reaction of a fuel in the presence of a catalyst. µFC is 
considered as a green power source because the outputs of chemical reaction are 
environmental clean. The fuel has a much higher energy density. For example, 
theoretically the energy density of a methanol is five times higher than that of a lithium 
ion battery. Thus, it can achieve longer lifetime for the same weight or volume. With 
the advance of cutting-edge MEMS technology, researchers can shrink the size of fuel 
cells to chip dimension and integrate it with an integrated circuit (IC) to form a system-
in-package (SIP) platform [Torres 2008]. In [Chu 2006], a silicon-based chip-scale fuel 
cell is fabricated and measured. Figure 6 shows a typical V-I characteristic (solid line) 
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of a micro fuel cell. When the current density increases from zero, the µFC passes 
through three distinct operation regions: activation, ohmic and concentration 
polarization. Figure 6 also shows the estimated output power curve (dash line). It is 
obvious that there exists a maximum power point (MPP) in the region of ohmic 
polarization. 
 

 
 

Figure 6. V-I and P-I characteristics of a micro scale fuel cell 
 
Most existing fuel cell models assume constant fuel flow and unchanging concentration 
conditions [Yu 2004]. As a result, these models are only applicable to predict steady-
state, time-independent behaviors. In [Chen 2008], a Cadence-compatible electrical 
model for a micro-scale direct methanol fuel cell (DMFC) was first developed to 
express the dynamic and steady state electrical behavior. This proposed electrical model 
is capable of prediction of runtime, large/small signal steady state or transient 
responses.  
 
- 
- 
- 
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