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Summary

There has been tremendous effort in the development of smart structures in the past
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decades due to the rapid development of sensor and actuator technology. A smart
structure has essentially two main systems, namely health monitoring system and
vibration control system, in addition to the concerned civil engineering structure. Health
monitoring system is used to detect any possible damage and/or deterioration while
vibration control system is used to suppress the vibration of a structure for safety and
serviceability consideration. Health monitoring system includes data acquisition system,
identification algorithm, diagnosis and prognosis system. Data acquisition system
records structural response (usually acceleration) for the identification algorithm to
estimate some key parameters, such as modal frequencies or stiffnesses of the structure.
By using this result, the diagnosis system determines any possible damage, its location
and severity. Finally, the prognosis system estimates the possible consequences of the
identified damage. On the other hand, there are several types of vibration control
systems: passive, active and semi-active control system. Passive control system
suppresses structural vibration by base isolation or energy dissipating sficchanism
without using any sensory system. Active or semi-active control system_irie'ade; data
acquisition system and controller algorithm. The measur£u‘response is<se!. to"compute
the feedback by the controller. An active control system agpli; s feesbac'( force through
an actuator system while a semi-active control sygiem.aogies fezdback w adjust in a
real time manner the variable damping and/or stitiness propérties ofssome advanced
devices installed in a structure.

In this chapter, we focus on the algorithias for both_heaita monitoring and vibration
control system. First, we present tht fuhdamental concepts of system identification,
including definition of input-output reiatigniship, niade! identification, model updating
and model identifiability, etc. Fiven, «ve introduss a namber of well-known parametric
identification methods using|measi red response ‘and they are categorized into non-
Bayesian and Bayesian giypes:=Mext, an “iterat.ve model updating procedure using
identified modal paramiters Of a siructure will be presented. Afterwards, we will
introduce another lgvel a1 system deditification problem, which is the selection of a
suitable model #iass for parametric “entification. Three well-known methods are
presented: Ak&kesinformatiginciiterion, Bayesian information criterion and Bayesian
asymptotic exparsigi. In tessecond half of this chapter, we will focus on vibration
control fo. . Ciwiliangineering structures. Passive control, active control and semi-active
control swategy will ‘w=¥atioauced. Finally, two popular control algorithms, namely the
linearhquac ratic Gaussian regulator and the sliding mode control, will be introduced.
Their application “e” conjunction with the clipped optimal controller for semi-active
control is al{o pregeinted.

1. Introduction

To fully exploit new technologies for response mitigation and structural health
monitoring, improved design methodologies are desirable (Kozin and Natke 1986;
Unbehauen and Rao 1987; Natke 1988; Farrar and Doebling 1997; Doebling et al. 1998;
Ivanovi¢ et al. 2000; Chang et al. 2003; Sohn et al. 2003; Kerschen et al. 2006;
Kotakowski 2007). The design of smart structures involves system identification and
vibration control. In this chapter, we will introduce fundamental concepts and some of
the well-known algorithms for these two areas. First, we present the fundamental
concepts of system identification, including definition of input-output relationship,
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modal identification, model updating and model identifiability, etc. Then, a number of
well-known parametric identification methods are introduced using measured response
and they are categorized into non-Bayesian and Bayesian type. Next, an iterative model
updating procedure using identified modal parameters of a structure is introduced.
Afterwards, we will introduce another level of system identification problem, which is
the selection of a suitable model class for parametric identification. Three well-known
methods are presented: Akaike information criterion, Bayesian information criterion and
Bayesian asymptotic expansion. Then, the second part of this article will be focused on
structural vibration control. The basic concepts of passive, active and semi-active
control will be introduced. Finally, the well-known linear quadratic Gaussian regulator
and the sliding mode control algorithm will be derived. The application with the clipped
optimal controller for semi-active control system is also introduced.

2. System ldentification in Structural Engineering

Figure 1 shows the general relationship of different stractural dynamics hrowieéms. In
structural engineering, our concern is structural systems;»stchias buiidinigs, bridges and
towers. To estimate the performance of a structure, ive r2et0 coilstrict a nathematical
model, e.g., the mass, damping and stiffness matrices/in th¢ linearLase. From this
mathematical model, one can proceed with aa eigenvalue prohlem to compute the
natural frequencies and mode shapes of/the trociure£On’ the other hand, one can
proceed with response calculation or “randem vibratitn analysis to assess the
performance of the structural design® Fuithermore, caetan go from eigenvalues and
eigenvectors for response calculation 3r rdndom \ibretion analysis and this is called
modal analysis. These are forweard,oroblems in stfuctural dynamics. On the other hand,
the backward or inverse prolilems izceive/more.and more attention in recent decades.
By using the measured sfructural=s¢sponse,‘ane fan estimate the modal frequencies and
mode shapes and this process /s call<d modal identification. One can also estimate the
model parameters i1 the, suicturaineodel using measured structural response and/or
identified modalsarainete.'s ane,this pracess is called model updating.

Mgamitical Mocet, 1A(0)X +C(0)x + K(0)x = TF + T_F,
A

»
\

\

\ :
\ Model updating
\

Response

4 Eigenvalue
calculation
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Figure 1. Relationship among different structural dynamics problems
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2.1. Basic Concepts
2.1.1. System

Figure 2 shows the block diagram of a system and it consists of the input, output and the
plant. In structural identification, the input usually is the excitation to the structure and
the output is the structural response. The plant is the structure of concern. There are two
levels of system identification problems, namely parametric identification and model
class selection. The parametric identification problem is to identify unknown
parameters given a class of mathematical models for a particular structural system. The
second level deals with the selection of a suitable class of mathematical models for
parametric identification. The second level is significantly more difficult but also more
crucial than the first level since parametric identification results will be by no means
meaningful if one fails to obtain a suitable class of models. However, &ue to the
difficulty of this problem, it is usually determined by user’s judgment.

-
Input ——»  Plant |~—ﬁ\ Output
L £ N\

Figure 2. SchermatiC diagran ot systems

Development of system identi‘icatich techriquessbegan earlier in aerospace engineering
and electrical engineering (Eykweit 1974; \iuny 1977; Peterka 1981; Soderstrom and
Stoica 1989; Unbehaueri,and Rao 4990; Peeters and De Roeck 2001). Some of the
methods were migiated=to structural”engineering problems but it is not a straight-
forward exercise’due to_some @nique “eatures in civil engineering structural systems.
One main ditdicsity ,comses wromne large scale of civil engineering structures.
Furthermore, canstitutivereiationship of some materials, such as concrete or soil, can be
very cemplex:=’herefore, “modeling error is large when comparing with aerospace
engineering, electricas, Granechanical engineering problems. As a result, model class
selectiqn iy civil enraineering problems will be more crucial compared with other
engineering ossciezCe disciplines. Furthermore, due to the large scale, there are usually
a large numlerGitur.certain parameters to be identified. In this case, well-posedness will
be an issue of sa#icern. In other words, there may be multiple (finite or infinite) optimal
solutions.

Another difficulty is due to the fact that the input is usually unknown. In the context of
structural dynamics, the input is the excitation that includes self weight of the structure,
ground motion, wind pressure field and other moving loads (e.g., force generated by
moving people or vehicles). Except for the self weight and ground motion, the others
are difficult to measure. Therefore, system identification problems in structural
dynamics usually require treatment of unmeasured input. This is in contrast to some
other disciplines that the input can be measured or even be controlled by the user.
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2.1.2. Model Identifiability

System identification is an inverse problem so ill conditioning is inevitably an important
issue for consideration. In parametric identification, there may exist one, multiple (but
finite) or infinite values of the model parameters to give identical system output.
Therefore, given one set of measured system output, it is not necessary to give the
unique solution of the model parameters. This issue was discussed in Ljung and Glad
(1994) and Katafygiotis and Beck (1998). This is important especially for large number
of uncertain parameters because it is difficult to visualize. Given a set of input-output
measurements of the underlying system D, use S,,4(0,;D) to denote the set of all
possible model parameters which give the same model output as the model associated
with 0.

A parameter 6, of @ is model-identifiable at " for model class C if thizeseXists a
positive number ¢, such that

0S4 (0,;D) = |6 -6 <z or g =4 (1)

In other words, ¢9|* is uniquely specified vithinia weighkarhzod of each of its possible
values by D. There are three main categorieaof.identiiahility:

1. A parameter g of 0 is glohally mocel-identifiatte ‘at 0" for model class C if
0€S,04(8,:D) =6 =6 2

In other words, 6. isafiGuely specifitd by D. If 6, is globally model-identifiable at 0,
then it is also réod<i-identifizion an04

2. Apaamewr 6, of 6\ locally model-identifiable at @ for model class C if it is
modeisiaentifiable,buinot globally model-identifiable.

3. Anparanicter 6, of 0 is model-unidentifiable if it is not model-identifiable.

2.2. Some Well-Known Parametric Identification Methods Using Measured
Response

Parametric identification of civil engineering structures is a challenging task that has
attracted extensive research efforts over the latest decades (Goodwin and Payne 1977;
Ljung 1987; Imai et al. 1989; Soderstrom and Stoica 1989; Sinha and Rao 1991,
Johansson 1993; Ghanem and Shinozuka 1995; Alvin et al. 2003; Kijewski-Correa et al.
2008). Comprehensive literature reviews (Bekey 1970; Astrom and Eykhoff 1971,
Peeters and DeRoeck 2001; Deistler 2002; Gevers 2006; Kerschen et al. 2006) studied
the development of this flourishing research area. Numerous methods have been
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proposed for parametric identification using measured response (Kozin and Natke 1986;
Lew et al. 1993; Doebling et al. 1998; Petsounis and Fassois 2001; Maia and Silva 2001;
Soderstrom 2003; Giraldo et al. 2009). In this section, we focus on non-Bayesian
parametric identification techniques. Three representative methods, including the
recursive least squares approach, the extended Kalman filter (EKF), and the
eigensystem realization algorithm (ERA), are presented in the following subsections.

2.2.1. Recursive Least Squares Approach

Recursive least squares approach is an iterative algorithm to minimize the squared
residual between the measurements and the model outputs (Ljung 1977; Soderstrom et
al. 1978; Ljung and Soderstrom 1983; Solo 1980; Zhou and Cluett 1996; Sharia 1998;
Young 2011). It is an extension of the ordinary least squares approach in the sense that
the solutions are obtained in an efficient iterative manner (Durbin and Wa&on 1950;
Ljung and Soderstrom 1983). Nevertheless, in contrast with the ordinarv_leagt scuares
approach, the recursive least squares approach is an oziirie estimatiefi te chrivgue and
does not require to store or reprocess the entire set of data“at every ximexinstant. Due to
its computation efficiency and simplicity, the re¢ursixe“i€ast sfiuares approach is a
popular parametric identification technique in the 20~ cerwury £3eke;:,1570; Astrom and
Eykhoff 1971; Caravani et al. 1977; Young 1984). In the_following, its identification
procedure is introduced.

Consider a dynamical system thdt i& parameterizea™by N, model parameters
0=1[6, ,...,HNH]T. The objective_here 4540 usendiscrete’ response measurement for the

identification of these model | arameters. Absume taat there exists a contaminated linear
relationship between the heasurewient y, € RN and the model parameters:

Y, =P,0+¢g,,n=0270 (3)

The measurémert, pdise gmnef<No 1s modeled as zero-mean discrete Gaussian white

noise With ‘sovaiiance mawis, Be &' ] = X, . The transformation matrix P, e RNoMNo s

used 0 des ribe this relationship between the measurement y, and the model parameter
vector 9 Foi" “example, consider an autoregressive (AR) model:
X, =84 X,_1 LAFRN, &, . In this case, the measurement is y, = x,, the transformation

matrix is P, =X, ;,X, ,] and the model parameter vector is 8 =[a,,a,]" .

The recursive least squares algorithm identifies the model parameters by minimizing a
weighted sum of squared residuals between the measurements and corresponding

prediction by the model. This algorithm identifies the optimal parameter vector 0,

based on measurements up to the n™ time step in a recursive manner. The cost/objective
function can be written for the n™ time step in the following form:

n
J(@9,) ZZ#n,k (Yk -P6, )T 2;& (Yk _Pken) (4)
k=1
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where the variables x,,,k=12,..,n, are used to assign differential weighting to

different data points. The idea is to gradually fade out the contribution of data points far
away from the current time step. One popular choice is given as follows (Ljung and
Soderstrom 1983; Lozano 1983; Kulhavy and Zarrop 1993):

Hox = {77”77”—1 /Y 1<k<n (5)

1 k=n

where 77, <1 is called the forgetting factor so it is clearly that the weightings s,

decrease as n—k increases. Selection of the forgetting factor, and thus the weightings,
is a trade-off between the parameter tracking capability and the robustness against noise
of the algorithm. One popular choice is the exponential weighting fuaction

pn e =€ with 0 <7, <1 for all n (Johnstone et 2,1982). Anoftehwidely used
form is to set the forgetting factor as a constant with alGe petwesn d@na L (Zarrop

1983). Hence, the weighting function is expressed (is_smy, = 778"‘ 204ne weightings are

reduced by a factor of 7, in each time step.

The optimal model parameter vector at the n'' time steyt én can be determined by
minimizing the objective function in<:a.44) with raspezi#09,,:

n r
6, =arg rgin J= Rﬁlzﬂn Py E;iy', (6)
n k=1

where the matrix R{ isgiven by:

n
Ry = PGP =g+ Pr P, ()
k=1

By using Ejs. (5)=(7),:the following recursive formula can be obtained to update the
model parametars ct/cacn time step:

én = R;l |:<Rn ) Ban;;Pn )On—l + PnTZ;;yn} = én—l +G, (yn _Pnen—l) 8)
where the estimator gain matrix G, is given by:
G,=R,'P X, ©)

Finally, in order to avoid direct computation of the inverse R, the matrix inversion

_ -1
lemma (A+BCD) ' =A™ -A"B(C"+DA'B) DA™ is utilized to obtain the

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

following recursive formula for R;*:

n

-1 -1
Ry'= Ry s +PTEIR ) =5 [I ~RUPY (m,E,, + BRAP )P, :|Rn£1 (10)

The recursive least squares parametric identification procedure can be summarized as
follows:

(1) Start with an initial model parameter vector 60 and matrix Rgl;
(2) Calculate R-* by Eq. (10);
(3) Calculate the estimator gain matrix G, by Eq. (9);

(4) Compute the optimal model parameter vector én by Eqg. (8);
(5) Repeat step (2) to (4) for the next time step.

2.2.2. Extended Kalman Filter (EKF)

Extended Kalman filter (EKF) (or Kalman-Schiaigt™ iilter) svassdevaloped on the
foundation of Kalman filter for the parametric ideatificatidrnof Gynamical systems
(Bellantoni and Dodge 1967; Jazwinski 1970;%Sch/idt,£381; Grewal and Andrews
1993; Brown and Hwang 1997; Simon 20)6). kalrnan fiiterswas developed to estimate
the state vector of linear systems (Ksiman,1200; Katmansand Bucy 1961; Sorenson
1985; Ruymgaart and Soong 1988). Innropagates the fizst two statistical moments of the
state vector by predicting and filtering alt¢rnataly 22 vach time step. Kalman filter is the
optimal filter for state estimation onlinear syztemc,subjected to Gaussian excitation. The
EKF extends the Kalman filte: to handle ¢lso skightly nonlinear systems. Furthermore,
an augmented state vectc¢r canysbe defined towaxiend the state vector to include also the
model parameters. Insauciaa way, the model parameters can be identified with the state
estimation process (0f«¢Iman filter:, Recognizing the power of EKF on parametric
identification, i*/nas bass widelysused,n many different disciplines (Hoshiya and Saito
1984; Dhaouvaangt al» 19974, Lin and Zhang 1994; Brown and Hwang 1997; Yun and
Lee 1997: Finiskevand Vithieet 1999; Chui and Chen 2009; Grewal and Andrews 2010;
Hoi et &, 210).

Some iteritures cateyarized the EKF as a Bayesian updating process (Jazwinski 1970;
Chen 2003; #7uen 2010a) because the algorithm can be derived under the Bayesian
probabilisticwfaniawork. In addition, the EKF shared a remarkable feature with
Bayesian appivaches that they can determine the optimal values of the model
parameters as well as their associated uncertainties. In this section, we follow the
original derivation (Kalman 1960; Kalman and Bucy 1961) which is formulated without
adopting the Bayesian perspective. The identification procedure is presented as follows.

Use X=[x",x"]" to denote the state vector that consists of the generalized
displacement and velocity vector. Then, the well known state-space representation of an

N, degrees of freedom (DOFs) linear dynamical system can be written as follows:

Xn+1 = Adxn + Ban
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y, =CX, +¢, (11)

where A, e R?N2Nd s the state matrix; B, e R*N"NF is the force distributing matrix;
CeR"2Nd s the observation matrix; X, eR*"d is the state vector at the n" time
step; F, eR"F is the input excitation; Y cR™ is the measured model output and

g, <R is the measurement noise. The excitation F and measurement noise & are

modeled as independent discrete Gaussian white noise with zero mean. Their covariance
matrices satisfy:

E[FFy | =266, E| g0 | =X, and E|Fgy |=0 (12)
where &, denotes the Kronecker delta.

Kalman filter propagates in estimating the state vectsi by predictinié. and filtering
alternately at each time step. Given the measur:many set D “=4y,,\,,...,y,}, the
predicted state vector can be calculated by:

>’\(nJr]Jn = E[Xn+1| Dn] = E[Adxn + Ban |C ‘] =F# an|n (13)

where the symbol 5(m|n = E[X,, | D, |, g¢fined folnctation convenience only. Based
on Egs. (11) and (13), the covzrianc matrixsGvtheorediction error can be determined:

) =E[(X ~X_, (X ) -X \TlDﬁ—Aﬁ‘. Al +B,X.B] (14)
n+ln — n+1 audin’ n{d Hing nJ_ d““njn“*d d<~F*d

A

o g A T
Again, the syrabol 2. 5 c| X ‘Xm|n)<Xm—Xm|n) |Dn} is defined for notation

convenience oriry. When'aaew data point y,, is available, the data set is enlarged to
D..f={y1Y2, .M. parieithe state vector can be filtered with the information carried

by the evv data ppixt.“The filtered state vector is given by (Kalman 1960; Jazwinski
1970):

Xn+]Jn+1 =E [Xn+1 | Dn+1] = z“n+]Jn+1 (Z;Jlrunxnﬂjn + CTijnﬂ) (15)

where the associated uncertainty of the filtering error (Xn+l_$(n+ﬂn+1) has the
following form:

in+]4n+l =E |:<Xn+1 B Xn+ﬂn+1)(xn+l - Xn+]4n+1 )T | Dn+1j| = (iiﬂn + CTZSC)_l (16)

By using Egs. (15) and (16), the filtered state vector expression can be rewritten in the
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following form (Jazwinski 1970; Simon 2006):

A

Xn+1ln+1 = )A(n+1|n + G n+1 (y n+l C>’\(n+1|n) (17)

where the Kalman gain matrix at the (n+1)™" time step is given by:

(TN SN olb My (18)

n+n+1

Equation (17) provides a similar form as Eq. (8) in the recursive least squares approach.

The Kalman filter estimation process starts from an initial prescribed state vector 5(0|0
(e.g., zero vector) and covariance matrix )30|0, which is usually a diagonal ‘na&iy with
large diagonal elements. The predicted state vector XHC can.he deterndines hv £q. (13)
and the covariance matrix of the prediction error Zﬂn cansle caiculateanby Eqg. (14).
When the first data point y, is available, the, filtered.siate actor ‘\7141 as well as its

associated covariance matrix ﬁm can be obtained wvcq. £47) and Eq. (16), respectively.

This finishes one cycle of the predicting ard filtZringsrocess. Then, the process will be
repeated for the subsequent time st€os.#it can be seunseaplicitly from the estimation
equations that the noise covariance metriges affecinthe, performance of the algorithm.
Previous studies demonstratediianarvitrary choise of the noise characteristics may lead
to biased estimation (Fitzgere!d 19/'1; Refr et al. '2999). To tackle with this problem,
Ljung (1979), Valappilgand Gedrgakis (2000, and Yuen et al. (2007a) proposed
computational strategies “or pre per sgiection of the noise parameters.

The extended Kdlman fiter (EKF) swits with defining the augmented state vector,
which extends“hestate vectsr v 1ncldde also the model parameters:

r=[x"9"9 T (19)

where we'model Laraiveter vector 0 :[91,6?2,...,0,%,]T contains N, variables to govern

the dynamical sysiein. A state-space representation for general linear/nonlinear systems
can be written as:

Ana = p(xn’Fn)
Yo =A(%n )+ (20)

where p(-) and q(-) are vector functions with dimension 2Ny+N, and N,
respectively. The excitation F and measurement noise € are modeled as zero-mean
discrete Gaussian white noise with covariance matrices E[FnFH:ZFﬁm. and

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

gvnn'y

E[snaﬂ =X _J,,, respectively. Furthermore, the excitation and measurement noise are
assumed to be statistically independent.

The dynamical system in Eq. (20) can be linearized locally utilizing Taylor expansion:

Ana = Ad,an +Bd,nFn + bn

yn ~ Can +qn +£n (21)
where the state, force distributing and observation matrices are given by
- 0 F ~ 0 ,F, . 0
e P e
Xn xn=%n|n Fn=0 n xn=injn Fn=0 O ¥n=Xnjn-1

respectively. Furthermore, the vector functions p, and ¢, are defined to ‘eafiipensate
the linearization error: p, = p(ﬁmmo)—'&d,ninm and q, = 4(9‘.”,,.)—6”2”'. ,

The prediction and filtering equations for EKF are“given: in asadlog/ tofcgs. (14)-(18),
as follows:

5(n+]4n =E [Xn+1 | Dn] = Ad,nf(nm + r)n
= ‘&d,ni Agn +l§d,nZF]§dT,n

(Wi

n+1n

A A ~ =
Xn+l|n+l - Xn+l|n + Gn+1(yn+1 e ‘+1)(n+1|n)

njn

R ~ 4 ~T -
Zn+JJn+1 =( negn T ChuXx Cn+1}

= & AT ]

Gy = 2‘n+]4n+1Cn+12u-‘ (22)

Following thedsame éstmatien procadure as the Kalman filter, the augmented state
vector and ity ascociated cavarance matrix can be obtained. Consequently, the model
parameteit=and_ its associateauncertainty can be determined as part of the augmented
state vecuar.

2.2.3. Evgensysteriy FReaiization Algorithm (ERA)

Eigensystem realization algorithm (ERA) identifies the minimal state-space realization
of a system using pulse response measurement (Silverman 1971; Juang and Pappa 1985).
It was developed under the realization theory (Ho and Kalman 1966; De Schutter 2000).
Using pulse response measurements, the Markov parameters of the system can be
calculated and hence the Hankel matrix can be constructed. The Hankel matrix is
factorized via singular value decomposition and the minimal state-space realization can
be determined. This algorithm has been widely applied to system identification with
field test data. Successful applications demonstrated its efficacy (Pappa and Juang 1988;
Lus et al. 1999; Qin et al. 2001; Lus et al. 2002; Brownjohn 2003; Siringoringo and
Fujino 2008; Caicedo 2011). In the following, the key identification procedure of ERA
is presented.
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Consider the state-space representation of an N, DOFs linear dynamical system with
N, DOFs observation:

Xn+1 = Adxn + Ban
y, =CX, +DF, (23)

where the state vector X =[xT,x']" eR?*™ includes the displacement and velocity

vector at the n™ time step; F, eR"MF is the excitation vector at the n™ time step; and

Y R is the model output vector at the n™ time sep. The state-space model matrices
A4, By, C, D are the system, force distributing, observation and direct transmission

matrix, respectively. The quadruple set (A,,B4,C,D) is called the (tate-space

realization of the system and the objective of ERA is to determine the miivinal state-
space realization.

By using Eq. (23), the model output can be rewrittefi as:
n-1

Yo =CAjX, + Y CA;“'B4F, +DF, (24)
k=0

Define the response matrix as follows:
Yn :[ygl))yE]Z)""yS]NF)]’ l‘:O’J 2'_" (25)

where y® is the”“mouals outiflit /at , n™ time step subjected to excitation

Fo =[0.,...,0,1,04.,0] ity at'the i Component) and F, =0, n>0 with zero initial
condition Xgw= ¢, Thien, EC, (2+4) gives the following relationship:

Y, =D
Y, =M = CATR 920,12, .. (26)

n

where M, =CA%,,n=0,1,2,..., are called the Markov parameters. Then the Hankel
matrix can be constructed as follows:

M M

n n+l n+sp-1
(<[ o Mhe T M @)
_Mn+sl—1 Mn+sl o Mn+sl+52—2 ]

where the choice of the values of s, and s, depends on the number of significant modes
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contributing to the structural response. Details can be found in Juang and Pappa (1985)
and Dohner (1994). For identification purpose, this matrix can be estimated using the
measured pulse response due to Eq. (26):

-y .

Y, Y,

n+1 n+2 n+sp
Y 2 Y 3 Y 1
Hn)~ " ™ "0 n>0 (28)
_Yn+sl Yn+sl+l Yn+sl+32—1_

Substituting Eqg. (26) to this equation, the Hankel matrix can be factorized as follows:
H(n)=H_AjHgz,n>0 (29)

where H, and Hy are the observability matrix and corcroltability metrix“iuang et al.
1992):

C
CAd spil
Ho=| " |and He=[By AgBy -4 A7, ] (30)
CAY?

In order to determine these tw? mat ices, s'ngular value decomposition is applied to the
Hankel matrix with n=(".

H(0)=USV' (31)

where the matricas 0 e RWosiNo ‘and v/ e R2NF2NF gre unitary. The singular value
decompos iGm2n be piogecded using the function ‘svd’ in MATLAB (MATLAB

2002). Tiig ratrix S @RE2NF contains the singular values of H(0) on its diagonal

S, 0
entries and 4t cyh be partitioned as S:{oS } where S, eR*Nd*?Nd  gnd

0
S, € R(6No2NeM2NE=2Nd) gy ying this partition, Eq. (31) can be rewritten as:

s, oV
H(0) =H.Hg <[V, Uo]{o SJ - (32)
0

For noise-free cases, S, =0and the rank of S is given by rank(S)=2Nd. Therefore,
H(0)= US, V. . For general noisy measurements, the values of the diagonal entries in

S, are closed to zero (Zeiger and McEwan 1974). Therefore, the Hankel matrix H(0)
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satisfies the following approximation:
H(0) =~ US,V, (33)

Then, the observability and controllability matrix can be determined as follows (Juang
and Pappa 1985):

H, =USY?
Hy =SY2V] (34)

By using Eq. (30), one can extract the matrix B, from the first N columns of the
controllability matrix Hy and the matrix C from the first N, rows of the observability
matrix H,_ .

Finally, the state-space system matrix A, can be aatermingd by taking n=1 in Eq.
(29):

Ay =HH(1)HE =S;Y2UJH(1) v, (35)

where the superscript © denotes the“gerieralized iaveizs” o1"a matrix. Furthermore, the
modal parameters of the system (i.e., tries#nodal freguencies, damping ratios and mode
shapes) can be obtained by sa@iving the eigeavaice problem with the identified system

matrix A,.

The identification proceduresst ERA,cai be summarized as follows:
(1) Construct #he “Hanlel matrices %#{0) and H(1) with measured pulse response
using Eq. (26
(2) Computethewiatrixa,Diby Eq. (26);
(3) Aalyssingular yalue\Gecomposition to H(0) to obtain Ug, S, and V;;
(4)"Comjute tha,obsarvability matrix H, and controllability matrix Hg using Eqg.

(34),

(5) Extracl thasinairices B, and C from H, and Hg by Eqg. (30);

(6) Compute A, using Eq. (35);
(7) Solve the eigenvalue problem of A to obtain the modal parameters of the system.

In order to improve the accuracy of the ERA algorithm with noisy measurement, Juang
et al. (1987) proposed an alternative approach, namely the eigensystem realization
algorithm with data correlation (ERA/DC). Instead of using the measurements to form
directly the Hankel matrix, the ERA/DC method uses the data correlation matrices
(derived from the original Hankel matrix). This method was shown effective in reducing
the bias due to measurement noise (Juang and Pappa 1986; Juang 1987). Significant
research efforts have been devoted to improve this algorithm (Juang 1997; De Callafon
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et al. 2008; Chiang and Lin 2010).

On the other hand, ERA or ERA/DC were originally derived to handle pulse response
data. However, the ERA or ERA/DC method can also handle response of broad band
excitation which is usually encountered in ambient vibration survey (Doebling et al.
1998). In such case, preprocessing of the measured response is necessary. One popular
approach is to use the random decrement technique to compute the pulse response from
the broad band response measurement (Vandiver et al. 1982). Then, ERA or ERA/DC
can be applied for parametric identification.

TO ACCESS ALL THE 55 PAGES OF " H' CHAPTE,
Visit: http://www.eolss.net/Eolss-sar.ipie Al'”" apte:.asrx

Bibliography

Akaike H. (1974). A new look at the statistical/denufication mo¢el, IEET Transactions on Automatic

Control 19(6), 716-723. [This paper reviewysne davelopfients énd classical procedures of statistical
hypothesis testing in time series analysis and,prasents the foriylation of a new technique for statistical
identification. It proposes the well-kzowritAkaike Infazmachin Criterion for the determination of the order
for time series models].

e

Alvin K.F., Robertson A.N., Feich G.w., Park K.C.\{202%). Structural system identification: from reality
to models. Computers and_Stroctures 81(123,1149-1176. [This is an expository paper of structural system
identification, signal prgCessing aiiu their appliCations to model-based structural health monitoring].

Astrom K.J., Eykhsf P. (1972). System identivication—a survey. Automatica 7(2), 123-62. [This paper
presents the gené.al £oncepts ofssysemnidéntification and provides a survey on system identification
techniques].

Au S.K.¢2041). Fust Bayesien “:F» method for ambient modal identification with separated modes.
Journal of Gngineering Macihanics (ASCE) 137(3), DOI: 10.1061/(ASCE)EM.1943-7889.0000213. [This
paper present’ a moditiad Bajesian fast Fourier transform approach for modal updating].

Barbu V., Srithazan Si27(1998). H-infinity control of fluid dynamics. Proceedings of Royal Society of
London, Serieq A 548, 3209-3033. [This paper presents the principles and mathematical formulation of an
H-infinity control thesry for fluid dynamics].

Beck J.L. (1990). Statistical system identification of structures. In Proceedings Structural Safety and
Reliability, ASCE, NY, 1395-1402. [This paper presents the principles and applications of Bayesian
analysis for system identification in structural dynamics].

Beck J.L. (2010). Bayesian system identification based on probability logic. Structural Control and
Health Monitoring 17(7), 825-847. [This paper presents the principles for quantification of modeling
uncertainty and system identification via the Bayesian probability framework].

Beck J.L., Au S.K., Vanik M.W. (2001). Monitoring structural health using a probabilistic measure.
Computer-Aided Civil and Infrastructure Engineering 16(1), 1-11. [This paper presents the principles and
mathematical formulation of a Bayesian probabilistic method for model updating and structural health
monitoring].

©Encyclopedia of Life Support Systems (EOLSS)


https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-37-31

CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Beck J.L., Katafygiotis L.S. (1998). Updating models and their uncertainties. |: Bayesian statistical
framework. Journal of Engineering Mechanics (ASCE) 124(4), 455-461. [This paper presents the
Bayesian statistical framework for model updating and quantification of the associated uncertainties].

Beck J.L., Yuen K.V. (2004). Model selection using response measurements: Bayesian probabilistic
approach. Journal of Engineering Mechanics (ASCE) 130(2), 192-203. [This paper presents a Bayesian
probabilistic approach for selecting the most plausible model class of a dynamical system].

Bekey G.A. (1970). System identification—an introduction and a survey. Simulation 15(4), 151-166.
[This paper reviews a number of system identification techniques and presents the comparison between
different techniques].

Bellantoni J.F., Dodge K.W. (1967). A square root formulation of the Kalman-Schmidt filter. AIAA
Journal 5(7), 1309-1314. [The paper presents the mathematical formulation and properties of the
covariance matrix of the Kalman-Schmidt filter].

Box G.E.P., Tiao G.C. (1992). Bayesian inference in statistical analysis. John Wiley and Sons, New
York: [A comprehensive study on the concepts and principles of Bayesian inference in_statistical
analysis].

Brockwell P.J., Davis R.A. (1991). Time series: theory and methods.£2™ edition). Sprifigar-Verlay, New
York: [A comprehensive study on the theory and computation sckiemessaf time seitaes piadals and their
applications on modeling and forecasting of data collected in tima,series].

Brown R.G., Hwang P.Y.C. (1997). Introduction to randoni.sighais and agpied Kaknan filtering (3"
edition). John Wiley and Sons: [An introductory study af the thacry and £pplicatices of random process
and Kalman filtering theory].

Brownjohn J.M.W. (2003). Ambient vibration [studies; for system Jdentification of tall buildings.
Earthquake Engineering and Structural Dyna:fiics 22(1)/71-95=IThis paper presents the principles and
demonstrates an application procedure of th: eicnsystem realizctioni aigorithm for system identification
of tall buildings].

Caicedo J.M. (2011). Practical o#idenges for thagnaiiral excitation technique (NEXT) and the
eigensystem realization algorithm ((::RA) fi'r moda/ identification using ambient vibration. Experimental
Techniques 35(4), DOI: 10.11%471747-1567.2010.00643,7.. [This paper presents the practical guidelines
for the natural excitation techi ique ai'd the eigensysteriiiealization algorithm for modal identification].

Caravani P., Watson M/_., Thorison W.T.¥157/7) 4Recursive least-squares time domain identification of
structural parameters: JeGrnall of Apolied Machanics (ASME) 44(1), 135-140. [This paper presents a
computationally efiicient I€agi-squasas wacursize algorithm for parameter identification].

Catbas F.N., ChaaluiS.K., Hasaizebi O., Grimmelsman K., Aktan A.E. (2007). Limitations in structural
identificaticmma® laiae “constriied wtructures. Journal of Structural Engineering (ASCE) 133(8), 1051-
1066. [Ttig paper discusqes,theimadeling and experimental limitations in structural identification of large
constgticted wicilities].

Chang F&f Flatau ‘\.«~ L S.C. (2003). Review paper: health monitoring of civil infrastructure.
Structural Hea'tn Moni oring 2(3), 257-267. [A review paper on damage detection methods including the
use of innovatiadign | processing, new sensors and control theory].

Chen Z. (2003). Bayesian filtering: from Kalman filters to particle filters, and beyond. Technical report,
McMaster Adaptive Systems Lab., McMaster University, Hamilton, ON, Canada: [A comprehensive
report on the developments and features of Bayesian filtering].

Chiang D.Y., Lin C.S. (2010). Identification of modal parameters from ambient vibration data using
eigensystem realization algorithm with correlation technique. Journal of Mechanical Science and
Technology 24(12), 2377-2382. [This paper presents a modification of the eigensystem realization
algorithm with data correlation for modal parameter identification of structural systems].

Ching J., Beck J.L., Porter K.A. (2006). Bayesian state and parameter estimation of uncertain dynamical
systems. Probabilistic Engineering Mechanics 21(1), 81-96. [This paper presents some parameter
estimation techniques in Bayesian state for nonlinear models].

©Encyclopedia of Life Support Systems (EOLSS)


http://www.wiley.com/bw/journal.asp?ref=0732-8818/
http://www.wiley.com/bw/journal.asp?ref=0732-8818/

CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Ching J., Chen Y.C. (2007). Transitional Markov chain Monte Carlo method for Bayesian model
updating, model class selection and model averaging. Journal of Engineering Mechanics (ASCE) 133(7),
816-832. [This paper presents a simulation-based approach called transitional Markov chain Monte Carlo
method for Bayesian model updating, model class selection and model averaging].

Choi K.K., Kim N.H. (2004a). Structural sensitivity analysis and optimization 1: linear systems. Springer,
New York: [A comprehensive study on the theory and mathematical schemes of structural sensitivity
analysis and optimization for linear systems].

Choi K.K., Kim N.H. (2004b). Structural sensitivity analysis and optimization 2: nonlinear systems and
applications. Springer, New York: [A comprehensive study on the mathematical schemes and
applications of structural sensitivity analysis and optimization for nonlinear systems].

Chui C.K., Chen G. (2009). Kalman filtering with real-time applications (4™ edition). Springer-Verlag,
New York: [A comprehensive discussion of the mathematical theory and computational schemes of
Kalman filtering].

Cox R.T. (1961). The algebra of probable inference. John Hopkins University Press, Baltimore: [A
comprehensive study on the concepts and principles of the algebra of probable inference].

De Callafon R.A., Moaveni B., Conte J.P., He X., Udd E. (2008). Geparal realization a!gutithm fof modal
identification of linear dynamic systems. Journal of Engineering{Mechanics (ASC-) 4Q) 712-722.
[This paper presents a general realization algorithm to identifysy,muual parametCrs oilinear dynamical
systems].

De Schutter B. (2000). Minimal state-space realization in linearssisétem ienry: arngverview. Journal of
Computational and Applied Mathematics 121(1-2), 331-254. [his paner proyides an overview of the
developments and basic algorithms for minimal statz-spacg resiizatieti of ) near time-invariant systems].

Deistler M. (2002). System identification atid ime sgeries @aalysicy, past, present, and future. In
Proceedings Stochastic Theory and Control¢ Festschritt for Tyrone /oancan, Kansas, 97-108. [This paper
presents the main features in the developmeris offsystem icantiiication and the associated time series
analysis].

Dhaouadi R., Mohan N., Norum L.\11991)] Design/and imoiementation of an extended Kalman filter for
the state estimation of a permasiciit magrat synchroious motor. IEEE Transactions on Power Electronics
6(3), 491-497. [This paper prisents &a appliciiion of tic extended Kalman filter for state estimation on a
permanent magnet synchsgmousimotor].

Doebling S.W., Farar*C.R.,/ Prime, M.B. {1698). A summary review of vibration-based damage
identification metkods #ThéxZiock and Vibration Digest 30(2), 91-105. [This paper provides an overview
of vibration-bagad V'dmaos”identiicat! on rvcthods to detect, locate and characterize damages in structural
and mechanical systerns with émpiatientation on engineering applications].

Dohner J3,. (1994). Thegaigerisysiam realization algorithm and the eigensystem realization algorithm
with «data Curreiation: thuaryw=and application. Sandia National Laboratories Technical Report: [A
comprenanside repory Uigthe theory and applications of the eigensystem realization algorithm and the
eigensystem realizatioiaigorithm with data correlation].

Doyle J.C., Glawgi K Khargonekar P.P., Francis B.A. (1989). State-space solutions to standard H, and
H,, control problems? IEEE Transactions on Automatic Control 34(8), 831-847. [This paper presents the
principles and mathematical formulation for solving standard H, and H,, control problems].

Doyle J.C., Francis B.A., Tannenbaum A.R. (1992). Feedback control theory. Macmillan Publishing
Company, New York: [A comprehensive study on the principles and mathematical formulations of
feedback control systems].

Durbin J., Watson G.S. (1950). Testing for serial correlation in least squares regression |. Biometrika
37(3-4), 409-428. [This paper presents the principles and accuracy analysis of least squares regression].

Dyke S.J., Spencer B.F., Sain M.K., Carlson J.D. (1996). Modeling and control of magnetorheological
dampers for seismic response reduction. Smart Materials and Structures 5(5), 565-575. [This paper
presents the clipped optimal control strategy for controlling magneto-rheological dampers to reduce
seismic structural response].

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Einicke G.A., White L.B. (1999). Robust extended Kalman filtering. IEEE Transactions on Signal
Processing 47(9), 2596-2599. [This paper presents a modified extended Kalman filter algorithm for
robust parameter estimation].

Ewins D.J. (2000). Adjustment or updating of models. Sadhana 25(3), 235-245. [This paper presents the
developments and review of some representative algorithms for model updating].

Eykhoff P. (1974). System identification: parameter and state estimation. John Wiley and Sons,
Chichester, England: [A comprehensive discussion of parameter and state estimation in system
identification].

Farrar C.R., Doebling S.W. (1997). An overview of modal-based damage identification methods. Los
Alamos National Laboratory, Los Alamos, NM. [This paper provides an overview of modal-based
damage identification methods to detect, locate and characterize damage in structural and mechanical
systems with implementation on engineering applications].

Feller W. (1950). An introduction to probability theory and its application vol. 1. John Wiley and Sons,
New York: [An introductory study on the theory and application of probability theory].

Fellin W., Lessmann H., Oberguggenberger M., Vieider R. (Eds., 2005). Analyzing unceifaixty in civil
engineering. Springer-Verlag, Berlin: [A comprehensive study on the uncertainty infciyil enoifieering
from design to construction].

Fitzgerald R.J. (1971). Divergence of the Kalman filter. IEE rransactions i Autamesic Control AC-
16(6), 736-747. [This paper examines the divergence prassiue) of the Waimangfilter estimation
technique].

Fox R.L., Kapoor M.P. (1968). Rates of changes ofsciganvaluss andsCigenvecters. American Institute of
Aeronautics and Astronautics Journal 6(12), [426-2429. [Thisyoaper presents the mathematical
formulation of the derivatives of eigenvalues and eigzanves.ors].

Fujino Y., Soong T.T., Spencer B.F. Jr. (152¢}, Structural“sontisi: basic concepts and applications. In
Proceedings of the ASCE Structures Congress ¢V, Chicagg, “!iiois, 1277- 1287. [This tutorial paper
presents an overview of the basic£onceis and aprlicalons or structural control techniques in civil
engineering].

Furuta K. (1990). Sliding-moge control ur discrete syatam{ Systems Control Letters, 14(2), 145-152. [This
paper presents the principles axd mat iematisal farmulation of a discrete sliding mode control system].

Friswell M.1., MottershradsGc) (1995). Finie elsinent model updating in structural dynamics. Kluwer
Academic Publishefs, Bostor. [A compreherisive study on the principles and applications of finite
element model upatiziy in.structusal Cynamics].

Gamota D.R.. Filigko WiE. (1621).4%ynamic mechanical studies of electrorheological materials: moderate
frequencias. Journia. of Rheology'?5(3), 399-425. [This paper presents a rheological model to describe the
mechanicaraehavior of elcciartizoiogical materials].

Gevers 4. (7006). Aoemanarview of the development of system identification. IEEE Control Systems
Magazine 26(6)=23-120. [This paper presents the developments of identification theory in the area of
control].

Ghanem R., Shiraztka M. (1995). Structural system identification I: theory. Journal of Engineering
Mechanics (ASCE) 121(2), 255-264. [This paper reviews several of structural system identification
algorithms for linear and time invariant systems].

Giraldo D.F., Song W., Dyke S.J., Caicedo J.M. (2009). Modal identification through ambient vibration: a
comparative study. Journal of Engineering Mechanics (ASCE) 135(8), 759-770. [This paper provides an
analytical comparison of three representative modal identification techniques].

Goodwin G.C., Payne R.L. (1977). Dynamic system identification: experiment design and data analysis.
Academic Press, New York: [A comprehensive study of system identification on experiment design and
data analysis].

Grewal M.S., Andrews A.P. (1993). Kalman filtering theory and practice. Prentice Hall, Englewood
Cliffs, New Jersey: [A comprehensive exploration of the theory and applications of the Kalman filtering
theory].

©Encyclopedia of Life Support Systems (EOLSS)


http://ascelibrary.org/emo/

CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Grewal M.S., Andrews A.P. (2010). Applications of Kalman filtering in aerospace 1960 to the present.
IEEE Control System Magazine 30(3), 69-78. [This paper presents an overview of the literature and
applications of Kalman filter in aerospace analysis].

Gull S.F. (1988). Bayesian inductive inference and maximum entropy. In Proceedings Maximum Entropy
and Bayesian Methods in Science and Engineering, Vol. 1: Foundations, Erickson G.J., Smith C.R. (Eds.).
Kluwer, Dordrecht, 53-74. [The paper presents the concepts of Bayesian reasoning and the principles of
Bayesian inductive inference and maximum entropy].

Hahn W. (1963). Theory and application of Liapunov’s direct method. Prentice Hall, Englewood Cliffs,
New Jersey: [A comprehensive study on the theory and applications of the Liapunov’s direct method]

Haftka R.T., Adelman H.M. (1989). Recent developments in structural sensitivity analysis. Structural
Optimization 1(3), 137-151. [This paper reviews the recent developments of structural sensitivity analysis
and provides a comparison on the sensitivity of static/transient response and that of eigenvalue problems].

Hemez F.M., Doebling S.W. (2001). Review and assessment of model updating for nonlinear, transient
dynamics. Mechanical Systems and Signal Processing 15(1), 45-74. [This paper reviews the principles of
model updating methods for nonlinear, transient dynamical systems and provides an assesgiment,an their
performance with experimental results].

Ho B.L., Kalman R.E. (1966). Effective construction of linear stée vasiable mode's frimginput/output
functions. Regelungstechnik 14(12), 545-548. [This paper praseris the pringiples wad mathematical
formulation for constructing minimal finite-dimensional realizatiorsaf uynamict! svsemsy.

Hoi K.I., Yuen K.V., Mok K.M. (2010). Optimizing the performatice of rialman &iter statistical time-
varying air quality models. Global NEST (Network for Evwironmental Scienceyand Technology) Journal
12(1), 27-39. [This paper presents an application ¢r Karnaiwiilter 0 stz listical time-varying air quality
models and provides a Bayesian based procedurs f¢r estim iting the nois® variances].

Hoshiya M., Saito E. (1984). Structural ider{ificsiion by extended Kaman filter. Journal of Engineering
Mechanics (ASCE) 110(12), 1757-1770. [This | apespresents ¢n apolication of the extended Kalman filter
on seismic structural system].

Housner G.W., Bergman L.A., Catghey 1 K., Chfssiakog #:G., Claus R.O., Masri S.F., Skelton R.E.,
Soong T.T., Spencer B.F., YAG J.T.%(2097). Structural/ control: past, present, and future. Journal of
Engineering Mechanics (ASC =) 123(9), 897-271. [This"paper provides an overview on the developments
of structural control and seenitcsinasf cividengitieering structures].

Imai H., Yun C.B.oMdafuyana O., ShinoztiadM. (1989). Fundamentals of system identification in
structural dynamics. ProlagilisticeEngineering Mechanics 4(4), 162-173. [This paper presents the
fundamental ccacepts of sjystemduent ficacion and examines several representative methods, including the
least squares. instiymeial variabigdnaximum likelihood and extended Kalman filter method].

Imregun 14, Visser W.J.£4991), ~areview of model updating techniques. The Shock and Vibration Digest
23(1)0.9-20.° This review papesdiscusses a number of representative model updating techniques and
provideasuos,estions Nnaw avenues for future research].

Ivanovi¢ S.S., Aritunac M.D., Todorovska M.I. (2000). Ambient vibration tests of structures - a review.
Bulletin of Inciasi Sopiety of Earthquake Technology 37(4), 165-197. [A literature review on ambient
vibration tests anchsiinmary of the results of relevant applications].

Jazwinski A.H. (1970). Stochastic processes and filtering theory. Academic Press, New York: [A
comprehensive study on linear and nonlinear filtering theory of stochastic processes].

Jeffreys H. (1961). Theory of probability (3" edition). Oxford Clarendon Press: [A comprehensive study
on the concepts and principles of scientific inferences based on Bayesian statistics].

Jiang X., Mahadevan S., Adeli H. (2007). Bayesian wavelet packet denoising for structural system
identification. Structural Control and Health Monitoring 14(2), 333-356. [This paper presents a Bayesian
discrete wavelet packet transform denoising approach for structural system identification].

Johansson R. (1993). System modeling and identification. Prentice Hall, Englewood Cliffs, New Jersey:
[A comprehensive study on the principles and computational schemes for system modeling and
identification].

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Johnstone R.M., Johnson C.R., Bitmead R.R., Anderson B.D.O. (1982). Exponential convergence of
recursive least squares with exponential forgetting factor. Systems and Control Letters 2(2), 77-82. [This
paper presents the convergence properties of exponential forgetting factor in recursive least squares
estimation algorithm].

Juang J.N. (1987). Mathematical correlation of modal parameter identification methods via system
realization theory. International Journal of Analytical and Experimental Modal Analysis 2(1), 1-18. [This
paper presents the principles and mathematical formulation for modal parameter identification with the
system realization theory].

Juang J.N. (1997). State-space system realization with input and output-data correlation. NASA
Technical Paper 3622. [This paper presents a new system state-space system realization approach to
improve the performance of eigensystem realization algorithm].

Juang J.N., Cooper J.E., Wright J.R. (1987). An eigensystem realization algorithm using data correlations
(ERA/DC) for modal parameter identification. Journal of Guidance Control and Dynamics 8(5), 620-627.
[This paper presents a modification of the eigensystem realization algorithm to reduce the bias in modal
parameter identification].

Juang J.N., Horta L.G., Phan M. (1992). System observer controller identification. tociuox. /NASA
Technical Memorandum 107566: [An instruction of a MATLAB taGisox for systemsobsi rvei=cuntroller
identification].

Juang J.N., Pappa R.S. (1985). An eigensystem realization a’joritm“1or modCt pa‘ameter identification
and modal reduction. Journal of Guidance and Control Dynamic, AIAAC 8(5),,629-627. [This paper
presents the mathematical formulation of eigensystém realizauon aigorithm tor modal parameter
identification and model reduction of dynamic systepisi

Juang J.N., Pappa R.S. (1986). Effect of noise'on mcdal paramex identified by the eigensystem
realization algorithm. Journal of Guidance, Guntral, am& Dynanicsv?(3),7294-303. [This paper presents a
discussion of the noise effect on modal pardmetsr ideniificat @n using the eigensystem realization
algorithm and establishes a systematic procedurats”discrimina.cithe noise].

Kalman R.E. (1960). A new apprbach to linear fiiieringsand prediction problems. Journal of Basic
Engineering (ASME) Series D 82(1),,35-45 [This g aper pifisents the fundamental concepts and principles
of Kalman filtering theory].

Kalman R.E., Bucy R.S#2962), Now resgits i linear filtering and prediction theory. Journal of Basic
Engineering (ASME) Se‘iess523(1), 95-107.This"paper presents the continuous-time version of Kalman
filtering estimation?

Katafygiotis LS., R¢ck M. (1898).)Upaating models and their uncertainties. 11: model identifiability.
Journal of Engirgering Mecaniy (ASCE) 124(4), 463-467. [This paper presents the principles and
mathematicanToriia.ation of aa wlgesithm for model identification and addresses the problem of model
identifiabila/].

Katafygiatis/L.S., Yiem< Vb (2001). Bayesian spectral density approach for modal updating using
ambient data. Easthquite Engineering and Structural Dynamics 30(8), 1103-1123. [This paper presents
the principles {nd_mathe matical formulation of a Bayesian spectral density approach for modal updating].

Kerschen G., Wordadi K., Vakakis A.F., Golinval J.C. (2006). Past, present and future of nonlinear system
identification in structural dynamics. Mechanical Systems and Signal Processing 20(3), 505-592. [A
survey review on the developments in system identification of nonlinear dynamical systems].

Kijewski-Correa T., Taciroglu E., Beck J.L. (2008). System identification of constructed facilities:
challenges and opportunities across hazards. In Proceedings of the ASCE Structures Congress,
Vancouver, Canada. [The study summarizes the challenges and future opportunities of system
identification of constructed facilities across hazards].

Kleijnen J.P.C. (1997). Sensitivity analysis and related analyses a review of some statistical techniques.
Journal of Statistical Computation and Simulation 57(1-4), 111-142. [This paper reviews the theory and
applications of several representative statistical techniques for sensitivity analysis].

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Kotakowski P. (2007). Structural health monitoring—a review with the emphasis on low-frequency
methods. Engineering Transactions 55(3), 1-37. [A review paper on structural health monitoring with the
emphasis on low-frequency methods].

Kozin F., Natke H.G. (1986). System identification techniques. Structural Safety 3(3-4), 269-316. [This
survey paper presents parameter estimation techniques in structural identification].

Krishnaiah P.R. (1976). Some recent developments on complex multivariate distributions. Journal of
Multivariate Analysis 6(1), 1-30. [A literature review on the developments and applications of complex
multivariate distributions].

Kulhavy R., Zarrop, M.B. (1993). On a general concept of forgetting. International Journal of Control
58(4), 905-924. [This paper presents general concepts for rational selection of forgetting factors].

Lam H.F., Yuen K.V., Beck J.L. (2006). Structural health monitoring via measured Ritz vectors utilizing
artificial neural networks. Computer-Aided Civil and Infrastructure Engineering 21(4), 232-241. [This
paper presents a method which incorporates the pattern recognition method and the Bayesian artificial
neural network design method for structural damage detection].

Lew J.S., Juang J.N., Longman R.W. (1993). Comparison of several system identificatio: m<uands for
flexible structures. Journal of Sound and Vibration 167(3), 461-480..LThis paper proyiuds a comparison
of the theory and application of several system identification metho(s].

Lin J.S., Zhang Y. (1994). Nonlinear structural identificatiopfusing extsfided /Ralman ilter. Computers
and Structures 52(4), 757-764. [This paper presents the periazfiange of ths> exigiidedsKalman filter on
parametric identification of nonlinear systems].

Ljung L. (1977). Analysis of recursive stochastic a'gowithins.4cEE Zraisactions on Automatic Control
AC-22(4), 551-575. [This paper presents a general [ ipproach for the analyGis of the asymptotic behavior of
recursive stochastic algorithms].

Ljung L. (1979). Asymptotic behavior of theyertended Kalian 1i'er as a parameter estimator for linear
systems. |IEEE Transections on Automatic Conwigs AC-24(1Y, 26-.0. [This paper studies the asymptotic
behavior and convergence mechanisyis oirthe extended.Kaifian filter].

Ljung L. (1987). System identificaticn: thesry for ti'e user| Prentice-Hall, Englewood Cliffs, New Jersey:
[A comprehensive study on th’: principies and compuatiorial schemes of system identification].

Ljung L., Glad T. (19947»Ornalokal idefitifiszbility of arbitrary model parameterizations. Automatica
30(2), 265-276. [This ptnexiautized the concints #iid computational schemes for global identifiablility of
arbitrary model parsineterizati<ns].

Ljung L., Sodesstrowt T. £2983)¢ rher ry awd practice of recursive identification. MIT Press, Cambridge,
MA: [A comprehenyive sthdyaGn the developments, principles and applications of recursive
identificatior.!

Lozano L.R:(1983). Convergere analysis of recursive identification algorithms with forgetting factor.
Automadica £9(1), 93-vTml1is paper presents a convergence analysis of a modified least-squares
recursive Identifiaatiori igorithm with specified forgetting factor].

Lus H., Betti ‘247 Lorgman R.W. (1999). Identification of linear structural systems using earthquake-
induced vibrationeata. Earthquake Engineering and Structural Dynamics 28(11), 1449-1467. [This paper
presents an application of the eigensystem realization algorithm for system identification of linear
structural systems].

Lus H., Betti R., Longman R.W. (2002). Obtaining refined first-order predictive models of linear
structural systems. Earthquake Engineering and Structural Dynamics 31(7), 1413-1440. [This paper
presents the principles and mathematical formulation for identifying predictive models and the relevant
modal parameters of linear structural systems].

Mackay D.J.C. (1992). Bayesian interpolation. Neural Computation 4(3), 415-447. [This paper presents
the principles and mathematical formulation of Bayesian approach for regularization and model
comparison].

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Maia N.M.M., Silva J.M.M. (2001). Modal analysis identification techniques. Philosophical Transactions
of the Royal Society A Mathematical, Physical and Engineering Sciences 359(1778), 29-40. [This paper
presents a general panorama of the developments and classification of modal identification techniques].

Mares C., Mottershead J.E., Friswell M.1. (2006). Stochastic model updating: part 1: theory and simulated
example. Mechanical Systems and Signal Processing 20(7), 1674-1695. [This paper presents the
principles and mathematical formulation of a stochastic model updating method].

Orr M.J.L. (1995). Regularization in the selection of radial basis function centers. Neural Computation
7(3), 606-623. [This paper presents the principles and mathematical formulation of the regularization in
the selection of radial basis function centers].

Marwala T. (2010). Finite-element-model updating using computational intelligence techniques:
applications to structural dynamics. Springer-Verlag, London: [A comprehensive study on the theory and
application for finite element model updating using computational intelligence techniques].

MATLAB (2002). Using MATLAB. The MathWorks, Natick, MA: [A user guide for MATLAB codes].

MATLAB (2011a). Signal processing toolbox 6, user’s guide. The MathWorks, Natick, 2##: [A user
guide for the signal processing toolbox in MATLAB].

MATLAB (2011b). Control system toolbox 9, user’s guide. The Matiiworks, NatickéMIA | [A"GSer guide
for the control system toolbox in MATLAB].

Mottershead J.E., Friswell M.l. (1993). Model updating in{strusturar dynantics#a survey. Journal of
Sound and Vibration 167(2), 347-375. [This survey paper presents the deve!&pmei.is o7 model updating in
structural dynamics].

Mottershead J.E., Friswell M.1. (Eds., 1998). Mod&1 upaating. Spee’al 1sbue of Mechanical Systems and
Signal Processing 12(1), 1-224. [This paper provies a ¢ mprehensivireview on the developments and
principles of model updating].

Natke H.G. (1988). Updating computational n.xdels in the frenuei cy domain based on measured data: a
survey. Probabilistic Engineering Mashanits o(1), 2e3350 [10is is a survey paper presents model
updating methods in frequency dom'in forime-invafiant lirgar elasto-mechanical systems].

Pappa R.S., Juang J.N. (1988) sumenavscrience With the eigensystem realization algorithm. Journal of
Sound and Vibration 22(1),130-345\[This plper discusses the practical experiences gained from the
applications of the eigengystenmiwealiCationdigorithm].

Papadimitriou C. (2004). Op imal gsensor p'agement methodology for parametric identification of
structural systems£Jousnai®si Soundyand Vibration 278(4-5), 923-947. [This paper presents a systematic
Bayesian probahilisi’c meiiod tafseler ¢ thewbptimal sensor configuration].

~

Papadimitrits rack J.L., /0S.1%, (2000). Entropy-based optimal sensor location for structural model
updating. oumal of Vikgationiard Control 6(5), 781-800. [This paper presents a systematic Bayesian
statistical enviopy-based methotor selecting the optimal sensor configuration].

Papadimiaitu C., Katofygiots L.S., Au S.K. (1997). Effects of structural uncertainties on TMD design: a
reliability-based4 approc=h. Journal of Structural Control 4(1), 65-88. [This paper presents a Bayesian
reliability-based=pprcach for optimal design of passive tuned mass dampers used for vibration control].

Peeters B., De Roeck G. (2001). Stochastic system identification for operational modal analysis: a review.
Journal of Dynamic Systems, Measurement and Control (ASME) 123(4), 659-667. [A review paper on
system identification methods for estimating the modal parameters of vibrating structures in operational
conditions].

Peterka V. (1981). Bayesian approach to system identification. In Trends and Progress in System
Identification, Eykhoff P. (Ed.). Pergamon Press, Oxford, 239-304. [This is a comprehensive study on
system identification using Bayesian approach.]

Petsounis K.A., Fassois S.D. (2001). Parametric time-domain methods for the identification of vibrating
structures—a critical comparison and assessment. Mechanical Systems and Signal Processing 15(6),
1031-1060. [This paper provides a comparison of the theory and assessment of several parametric time-
domain methods].

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Qin Q., Li H.B., Qian L.Z., Lau C.K. (2001). Modal identification of Tsing Ma bridge by using improved
eigensystem realization algorithm. Journal of Sound and Vibration 247(2), 325-341. [This paper presents
an application of modal identification using an improved eigensystem realization algorithm].

Rao G.P. (1983). Piecewise constant orthogonal functions and their application to systems and control,
LNCIS Vol.55, Springer Verlag, Berlin. [This book introduces the theory and applications of the
piecewise constant orthogonal functions on system identification and control in the continuous-time
domain].

Reif K., Gunther S., Yaz E., Unbehauen R. (1999). Stochastic stability of the discrete-time extended
Kalman filter. IEEE Transactions on Automatic Control 44(4), 714-728. [This paper presents the stability
behavior of the solution of the extended Kalman filter for general nonlinear systems].

Rogers L.C. (1970). Derivatives of eigenvalues and eigenvectors. American Institute of Aeronautics and
Astronautics Journal 8(5), 943-944. [This paper presents the mathematical formulation of the derivatives
of eigenvalues and eigenvectors].

Rudisill C.S. (1974). Derivatives of eigenvalues and eigenvectors for a general matrix. American Institute
of Aeronautics and Astronautics Journal 12(5), 721-722. [This paper presents the fmathamatical
formulation of the derivatives of eigenvalues and eigenvectors for general matrices].

Ruymgaart P.A., Soong T.T. (1988). Mathematics of Kalman-Bucy/iiltering. Springet-Veiag, New York:
[A comprehensive study on the mathematical theory and computational shhemes of thi, continuous-time
Kalman-Bucy filter].

Schmidt S.F. (1981). The Kalman filter: its recognition and develer:tient f«igerospest applications. AIAA
Journal of Guidance, Control and Dynamics 4(1), 4-7.\[Thisy papers=summerizes the recognition and
developments of the utility of Kalman filter for aeraspaceapptications].

Sharia T. (1998). On the recursive parametersdestiinaation”in thewgenera!, discrete time statistical model.
Stochastic Processes and their Applications{73(7), 151-172, [TFKis ~dper studies the recursive parameter
estimation for general discrete-time statisticai mod<i and preyide: the mathematical formulation of the
consistency and asymptotic linearity ofssacurgive inaximum Yieliyood estimator].

Schwarz G. (1978). Estimating the {limensiyn of a fnodel. Armnals of Statistics 6(2), 461-464. [This paper
presents the well known BayesiGifiniesmation Criteiion fo' estimating the dimension of a model].

Silverman L.M. (1971). Reaizatior of lisicar dynamical systems. IEEE Transactions on Automatic
Control AC-16(6), 554/567.IT 115 paper presents the realization theory for general linear systems and
discusses its applicability=u lin ar quadratic coatsol and filtering].

Simon D. (2004)."Q#uma’ statesLstir ativnd Kalman, H_ , and nonlinear approaches. John Wiley and

Sons, Hoboken, INaw (crsey: A citnprehensive study on optimal state estimation for general stochastic
systems withKalmar filtering, \a%intinite filtering and nonlinear approaches].

Sinhay].K., Friswell M.1. (22025 Model updating: a tool for reliable modeling, design modification and
diagnosis, T'e Shocy awd, Vibration Digest 34(1), 25-33. [This paper presents the principles and
applications of 2meigeiwvalue sensitivity approach for model updating, design modification and structural
health monitor nal

Sinha N.K., Raoe%¢”. (Eds.) (1991). Identification of continuous systems-methodology and computer
implementation, Kluwer, Dordrecht. [This book provides a broad survey of the mathematical techniques
for system identification of continue-time dynamical systems]. Siringoringo D.M., Fujino Y. (2008).
System identification of suspension bridge from ambient vibration response. Engineering Structures
30(2), 462-477. [This paper presents the application of the eigensystem realization algorithm for system
identification of suspension bridges].

Soderstrom T. (2003). ldentification of linear systems in time domain. Encyclopedia of Life Support
Systems (EOLSS), EOLSS publishers, Oxford, UK: [A description on the basic principles and
applications of time-domain system identification techniques].

Soderstrom T., Ljung L., Gustafsson 1. (1978). A theoretical analysis of recursive identification methods.
Automatica 14(3), 231-244. [This paper presents the principles and theoretical analysis of recursive
identification methods]

©Encyclopedia of Life Support Systems (EOLSS)


http://michael.friswell.com/PDF_Files/J76ft.html
http://michael.friswell.com/PDF_Files/J76ft.html

CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Soderstrom T., Stoica P. (1989). System identification. Prentice-Hall, Englewood Cliffs, New Jersey: [A
comprehensive discussion on system identification for linear systems].

Sohn H., Farrar C.R., Hemez F.M., Shunk D.D., Stinemates D.W., Nadler B.R. (2003). A review of
structural health monitoring literature: 1996-2001. Los Alamos National Laboratory Report LA-13976-
MS. [This report provides a literature review on the discipline of structural health monitoring between
1996 and 2001].

Sohn H., Law K.H. (1997). A Bayesian probabilistic approach for structure damage detection.
Earthquake Engineering and Structural Dynamics 26(12), 1259-1281. [This paper presents a Bayesian
probabilistic approach to estimate model parameters for identifying structural damages].

Solo V. (1980). Some aspects of recursive parameter estimation. International Journal of Control 32(3),
395-410. [The paper presents a unified view of recursive parameter estimation and addresses some
important aspects regarding this topic].

Soong T.T. (1990). Active structural control: theory and practice. Longman Scientific and Technical,
Essex, UK: [A comprehensive study on the principles and applications of active structural control].

Soong T.T., Constantinou M.C., (Eds., 1994). Passive and active structural vibration cint=Gi in civil
engineering. CISM Lecture Note. Springer-Verlag, New York: [A comprehensive study cp the nsaciples
and applications of passive and active structural vibration control in‘civilangineering

Sorenson H.W. (1985). Kalman filtering: theory and aspncatico1EEESPress, \lew York: [A
comprehensive study on the theory and applications of Kalmaiwfidierij g analysis,

Spencer B.F., Sain M.K. (1997). Controlling buildings: awew fronuer in feeavack. IEEE Control Systems
Magazine on Emerging Technology 17(6), 19-35. [Fiimoaparseviews tir developments and techniques
of structural control in civil engineering].

Stanway R., Sproston J.L., Stevens N.G. (1997). Nor=i#ear mod'enng,.o1van electro-rheological vibration
damper. Journal of Electrostatics 20(2), 16/41%54. [Fhis papgar pradents the mathematical formulation of
the non-linear modeling of electro-rheological viaration dampsial,

Symans M.D., Constantinou M.C' (199)). Semijsacuve “gontrol systems for seismic protection of
structures: a state-of-the-art review.\Engin_ering S ructuri's 21(6), 469-487. [A literature review on the
theoretical and experimental/developriients of semnactive control systems for seismic protection of
structures].

UBC (1997). Uniform Qwilsing code. Interritionsis Conference of Building Officials: [A building code
standard used primatily in thesvesterndlnited Stes].

Unbehauen H.qRacs.P.£1987)¢ Ider tification of continuous systems, North Holland, Amsterdam. [This
book presents thewaritwiples ahd apdlications for parametric and nonparametric identification methods of
continuoys Syistery.

Unbehauen “H.,"Rao_ G.Fa, (£820) Continuous-time approaches to system identification-a survey.
Automadica 75(1), 23,350 Tlis paper provides a comprehensive survey on continuous-time approaches
for system identifisatic 7.

Utkin V.1. (19v2575Slicing modes in control optimization. Springer-Verlag, New York: [A comprehensive

7

study on the prineip!Cs and applications of sliding modes in control optimization].

Valappil J., Georgakis C. (2000). Systematic estimation of state noise statistics for extended Kalman
filters. American Institute of Chemical Engineers Journal 46(2), 292-308. [This paper presents two
systematic approaches to calculate the process noise covariance matrix for the extended Kalman filter].

Van Keulen F., Haftka R.T., Kim N.H. (2005). Review of options for structural design sensitivity
analysis. Part 1: linear systems. Computer Methods in Applied Mechanics and Engineering 194(30-33),
3213-3243. [This paper reviews several representative approaches for structural design sensitivity
analysis for linear systems].

Vandiver J.K., Dunwoody A.B., Campbell R.B., Cook M.F. (1982). A mathematical basis for the random
decrement vibration signature analysis technique. Journal of Mechanical Design (ASME) 104(2), 307-313.
[This paper presents the mathematical basis for the random decrement technique of vibration signature
analysis].

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Vanik M.W., Beck J.L., Au S.K. (2000). Bayesian probabilistic approach to structural health monitoring.
Journal of Engineering Mechanics (ASCE) 126(7), 738-745. [This paper presents a Bayesian probabilistic
approach for structural health monitoring].

Wereley N.M., Pang L., Kamath G.M. (1998). Idealized hysteresis modeling of electro-rheological and
magneto-rheological dampers. Journal of Intelligent Material Systems and Structures 9(8), 642-649.
[This paper presents the modeling perspectives and constructs several models for electro-rheological and
magneto-rheological dampers].

Yang J.N., Wu J.C., Agrawal A.K. (1995a). Sliding mode control for nonlinear and hysteretic structures.
Journal of Engineering Mechanics (ASCE) 121(12), 1330-1339. [This paper presents the principles and
applications of sliding mode control for nonlinear hysteretic structures].

Yang J.N., Wu J.C., Agrawal A.K. (1995b). Sliding mode control for seismically excited linear structures.
Journal of Engineering Mechanics (ASCE) 121(12), 1386-1390. [This paper presents the principles and
applications of continuous sliding model control for seismically excited linear structures].

Young K.D., Utkin V.I., Ozguner U. (1999). A control engineer's guide to sliding mode control. IEEE
Transactions on Control Systems Technology, 7(3), 328- 342. [This paper presents a practi¢z guideline to
sliding mode control for control engineers].

Young P.C. (1984). Recursive estimation and time series aralysias, Springert:/ertioy, Berlin: [A
comprehensive study on the developments and theory of recursiya,esumatic n and<ime scries analysis].

Young P.C. (2011). Recursive estimation and time-series ariabyGis: jan intrgduction for the student and
practitioner. Springer-Verlag: [An introductory study of recursiva.esamatigiqand tiig-series analysis].

Yuen K.V. (2010a). Bayesian methods for structurei™enomiss andscivi! engliveering. John Wiley and
Sons, NJ: [A comprehensive study on the principli's and ppiicationaoff3ayesian methods for structural
dynamics and other areas in civil engineering]

Yuen K.V. (2010b). Recent developments cf/Sayegian méiel ¢'4ss selection and applications in civil
engineering. Structural Safety 32(5), 338-346. [iils paner revisws the developments and principles of
Bayesian model class selection and pfeseriis Ssome releyantioplications in civil engineering].

Yuen K.V., Au S.K., Beck J.L..£20u4). Tv o-stage!structu, al health monitoring methodology and results
for phase | benchmark studi¢s. Journai of Engineeiinasvliechanics (ASCE) 130(1), 16-33. [This paper
presents the mathematical foriaulaticn and £pplication of a two-stage Bayesian probabilistic method for
structural health monitofing|

Yuen K.V., Beck /L. (20033, Relidvility-based robust control for uncertain dynamical systems using
feedback of incoianlate noisy msGsujenants. Earthquake Engineering and Structural Dynamics 32(5),
751-770. [This proenorssents a wayssian reliability-based output feedback control method for controlling
the structur@masnonse].

Yuen K.V.3Bec J.L. (20059, Upaating properties of nonlinear dynamical systems with uncertain input.
Journa!, of Egineerng. Meghanics (ASCE) 129(1), 9-20. [This paper presents the Bayesian spectral
density apitoach forisysicma identification of nonlinear dynamical systems using incomplete noisy
stationary respgiise mecsurements].

Yuen K.V., Beck J/.., Katafygiotis L.S. (2002a). Probabilistic approach for modal updating using
nonstationary noisy response measurements only. Earthquake Engineering and Structural Dynamics
31(4), 1007-1023. [This paper presents a Bayesian time-domain approach for modal updating using noisy
nonstationary response measurements].

Yuen K.V., Beck J.L., Katafygiotis L.S. (2006a). Efficient model updating and monitoring methodology
using incomplete modal data without mode matching. Structural Control and Health Monitoring 13(1),
91-107. [This paper presents a computationally efficient Bayesian probabilistic method for structural
model updating and health monitoring using noisy incomplete modal data].

Yuen K.V., Beck J.L., Katafygiotis L.S. (2006b). Unified probabilistic approach for model updating and
damage detection. Journal of Applied Mechanics (ASME) 73(4), 555-564. [This paper presents a unified
Bayesian probabilistic approach for model updating and damage detection of structural systems].

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Yuen K.V., Hoi K.I., Mok K.M. (2007a). Selection of noise parameters for Kalman filter. Earthquake
Engineering and Engineering Vibration 6(1), 49-56. [This paper presents an offline Bayesian
probabilistic approach to estimate the process noise and measurement noise parameters for the Kalman
filter algorithm].

Yuen K.V., Katafygiotis L.S. (2001). Bayesian time-domain approach for modal updating using ambient
data. Probabilistic Engineering Mechanics 16(3), 219-231. [This paper presents the principles and
mathematical formulation of the Bayesian time-domain approach for modal identification].

Yuen K.V., Katafygiotis L.S. (2002). Bayesian modal updating using complete input and incomplete
response noisy measurements. Journal of Engineering Mechanics (ASCE) 128(3), 340-350. [This paper
presents a Bayesian time-domain method for modal updating using complete input and incomplete
response noisy measurements].

Yuen K.V., Katafygiotis L.S. (2003). Bayesian fast Fourier transform approach for modal updating using
ambient data. Advances in Structural Engineering — an International Journal 6(2), 81-95. [This paper
presents the principles and mathematical formulation of the Bayesian fast Fourier transform approach for
modal updating].

Yuen K.V., Katafygiotis L.S. (2005). Model updating using noisy response meastreni&its \ithout
knowledge of the input spectrum. Earthquake Engineering and SGuctural Dynamics . 4(2)7167-187.
[This paper presents the principles and mathematical formulatica % a)Bayesian poaomistic model
identification method without assuming the parametric model f5r the innu'spectzum]

Yuen K.V., Katafygiotis L.S., Beck J.L. (2002b). Spectrar densty estinaticy, of stochastic vector
processes. Probabilistic Engineering Mechanics 17(3)3.265-2/z. [This paper presents the statistical
properties of the spectral density matrix estimator forgwtionarvsistochasucvectorprocesses].

Yuen K.V., Katafygiotis L.S., Papadimitriou C,, Niicklebt rough N.C:%2001). Optimal sensor placement
methodology for identification with unmeasuied axciation. JoLrnahof Dynamic Systems, Measurement
and Control (ASME) 123(4), 677-686. [Thisyasper nresentsia Bedesian statistical method for designing
cost-effective optimal sensor configurations s strustural®odel updating and health monitoring
purposes].

Yuen K.V., Kuok S.C. (2010). Amiient irerfereni e in ICng-term monitoring of buildings. Engineering
Structures 32(8), 2379-2386.£(This naper presents e _n#inciples and demonstrates an application of a
systematic Bayesian probabiiistic frocedyfe for quantifying the ambient interference in long-term
structural monitoring daid].

Yuen K.V., Kuok#5.C. (2017%). Baydasian mediods for updating dynamic models. Applied Mechanics
Reviews 64(1), 05980C-1 - 010852-18.°5This review paper presents the formulation, development and
applications of same staté-of-theart fLayesian methods for model updating].

Yuen K./, “Lam™oF. (2006, “9n<the complexity of artificial neural networks for smart structures
monitoring.\Engineering wuwctures 28(7), 977-984. [This paper presents the mathematical formulation
and applicatic ns of a@avesiaa artificial neural network design method for smart structures monitoring].

Yuen K.V., Mu/,Q. (2U11). Peak ground acceleration estimation by linear and nonlinear models with
reduced order (MortsCerlo simulation. Computer-Aided Civil and Infrastructure Engineering 26(1), 30-
47. [This paper provises the mathematical formulation of an asymptotic expansion for linear regression
and a Monte Carlo algorithm for nonlinear regression and presents an application to seismic attenuation
relationship].

Yuen K.V., Shi Y.F., Beck J.L., Lam H.F. (2007b). Structural protection using MR dampers with clipped
robust reliability-based control. Structural and Multidisciplinary Optimization 34(5), 431-443. [This
paper presents a reliability-based semi-active control method for vibration control using magneto-
rheological dampers].

Yun C.B., Lee H.J. (1997). Sub-structural identification for damage estimation of structures. Structural
Safety 19(1), 121-140. [This paper presents a method of sub-structural identification for estimating local
damage in complex structural systems].

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Zarrop M.B. (1983). Variable forgetting factors in parameter estimation. Automatica 19(3), 295-298.
[This paper presents the influence of forgetting factors on the consistency of prediction error methods of
identification].

Zeiger H.P., McEwen A.J. (1974). Approximate linear realizations of given dimension via Ho's
algorithm. IEEE Transaction on Automatic Control AC-19(2), 390-396. [This paper presents an
approximated linear realization for system identification].

Zhou Q., Cluett W.R. (1996). Recursive identification of time-varying systems via incremental estimation.
Automatica 32(10), 1427-1431. [This paper presents the basic concept and mathematical formulation of a
recursive incremental estimation approach for identification of time-vary systems].

Zhou K.K., Doyle J.C., Glover K. (1996). Robust and optimal control. Prentice Hall, Upper Saddle River,
New Jersey: [A comprehensive study on the principles and applications of robust and optimal control].

Zhou F., Fisher D.G. (1992). Continuous sliding mode control. International Journal of Control 55(2),
313-327. [This paper presents the principles and mathematical formulation of continuous sliding mode
control].

Biographical Sketches

Ka-Veng Yuen, Professor in Civil and Environmental Engineering, Univessity o Macac

. BSc in Civil Engineering, National Taiwan University (1997)

. MPhil in Civil Engineering, The Hong Kong UniverJity of Science,and Tushnology (1999)

«  PhD in Civil Engineering, California Institute 4f Tecanciogy (24:02)

»  Associate dean (research and graduate stwdic)), Fac lty of Scieriie and Technology, University of
Macau (Sept 2012-Mar 2013)

*  Associate dean (academic affairs), Facui/ of Science and 't 2chnology, University of Macau (Sept
2011-Aug 2012)

. Interim associate dean, Facult’/ of Science ans” 1echiigalogy, University of Macau (Dec 2010-Aug
2011)

. Head, Department of Civil andyEnvironmental Z=agineering, University of Macau (Sept 2008-Nov
2010)

. Listed in National Scismee and TechiigiogvsAward Panel Expert Bank, Ministry of Science and
Technology, Pgople’s Rex ublic ¢£China (Fince 2012)

«  Listed in Natiosial Sciencesany! ‘wackiiology Programs Expert Bank, Ministry of Science and
Technologyy, Poanls’s Reouylicsuf China (Since 2012)

*  Young imweatthator Awalan!niesnational Chinese Association of Computational Mechanics (2011)

* Acaaumicadvisor, TieMecaw Institute of Engineers (since 2011)

. bditoria’ boardsmembiyr of: Structural Engineering and Mechanics, International Journal for
Uncestéinty Quaitificasion, International Journal of Reliability and Safety, IST Transactions of Civil
Engineerizg and "Construction Management, International Scholarly Research Network (ISRN)
Applied “Aaieriaucs, International Journal of Engineering and Technology Innovation, Open
Journal of Cid*cngineering

. Member, Bridge Committee, Mao Yi-Sheng Science and Technology Education Foundation (since
2009)

. Member, SC-1 Subcommittee on Computational Stochastic Mechanics, International Association on
Structural Safety and Reliability (since 2005)

. Member, SC-5 Subcommittee on Systems Identification and Structural Control, International
Association on Structural Safety and Reliability (since 2002)

. Member, Dynamics Committee, American Society of Civil Engineers (ASCE) (2002-2006)

*  Member, Probabilistic Methods Committee, American Society of Civil Engineers (ASCE) (2002-
2006)

»  Author of more than 100 scientific papers and book “Bayesian Methods for Structural Dynamics and
Civil Engineering” (2010 John Wiley and Sons).

©Encyclopedia of Life Support Systems (EOLSS)



CIVIL ENGINEERING - System Identification And Control In Structural Engineering - Ka-Veng Yuen and Sin-Chi Kuok

Sin-Chi Kuok received her B.Sc. and M.Sc. degree in civil engineering from University of Macau in
2007 and 2009, respectively. Since 2005, she has been employed as a research assistant in the Dynamics
and Monitoring Laboratory at University of Macau where she is currently working towards her Ph.D.
degree. Her research interests include system identification, structural health monitoring and probabilistic
analysis. She won a first prize in 11th National Collegiate Research Challenge Cup Competition (a bi-
year national competition that is known as the "Olympics" of science and technology for Chinese college
students), Beijing.

©Encyclopedia of Life Support Systems (EOLSS)



