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Summary 
 
The history of Measurement Theory (MT) can be divided into two periods, the Formation 
Period and the Mature Theory, where Suppes’ foundational work marks the transition 
from one to the other. The first period consists of two different yet complementary 
research traditions: the work of Helmholtz, Hölder and Campbell on axiomatics and 
morphisms on one side, and the studies by Stevens and his school on scales, 
transformations and invariance on the other. These two lines converge in Suppes’ 
foundational paper “A set of independent axioms for extensive quantities”, with which the 
second, mature, period starts. After this foundational paper MT develops and expands in 
different ways until it reaches its canonic exposition in the three-volume summa 
Foundations of Measurement. Before delving into the history of MT, we begin with a 
clarification of some conceptual issues in order to elucidate the nature and goal of MT. 
 
1. Measurement and Measurement Theory 
 
1.1. Measurement as Numerical Representation 
 
Measurement is the assignment of numbers to objects in order to numerically represent 
properties they have. Importantly, not every property can be numerically represented; 
only properties called magnitudes or quantities, which are capable of “more or less” 
instantiation, can be represented in this way. These are “gradual” properties, i.e. ones that 
can be exemplified to different degrees; standard examples are being heavy, being large 
or being hard. If we have two heavy objects, it makes sense to ask which one is heavier 
than the other; and the same applies to large rods or hard metals. This contrasts with 
properties like being a tiger, or being a proton, which are “all or nothing” properties, i.e., 
ones that cannot be instantiated to different degrees. If we have two protons it does not 
make sense to ask which one is more proton than the other. 
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Measurement provides a more fine-grained way of conceptualizing the world than 
classificatory or comparative concepts; actually it provides the most fine-grained way. 
Suppose you have a diamond in front of you. It is small, sparkling, light, hard, cold and 
beautiful. If you are asked to be more precise, you could refine your qualitative 
classificatory concepts and say that it is very small, quite light and cold, very, very hard, 
and extremely beautiful. You could carry on, but however much you refine your 
adjectives, it seems that you will always be able to do just a little bit better (in almost all 
cases). By contrast, as soon as you give the measures of the diamond’s properties you can 
no longer be asked to be more precise. Nevertheless, as we know, this is not possible for 
all its properties. You can say that the diamond’s volume is x , its mass y , its temperature 
z , and even that its hardness is w , but not (up to the now) that its beauty is u . The 
question is: why not? 
 
You also have a piece of chalk in front of you. It is small, dull, light, soft, cold and ugly. 
Now you can compare it with the diamond relative to the gradual properties they share. 
Both pieces are small, light, cold and hard, although not to the same degree: the diamond 
is smaller, lighter, colder and harder. Now you can also be more precise and give, if 
possible, the chalk’s measures: its volume x′ , its mass y′ , its temperature z′  and its 
hardness w′ . It is worth stressing that, for these measurements to make sense, the 
numbers assigned must be coherent with the previous qualitative comparisons. That is, if 
the diamond is qualitatively smaller tan the chalk, then the number x  assigned to the 
diamond’s volume must be smaller than the number x′  assigned to the chalk’s volume. 
And the same goes for the other gradual properties measured in both objects. 
 
It is also worth noting that, although every measurable property must be gradual, not 
every gradual property can be measured. For instance, both the diamond and the chalk 
share the gradual property beauty, and we can say that the diamond is more beautiful than 
the piece of chalk. Yet there is no known way of measuring beauty in a consistent and 
useful manner. For a gradual property to be measurable the property must satisfy certain 
conditions, conditions that volume, mass, temperature and even hardness satisfy while 
beauty doesn’t. Measurement theory studies, among other things, what these conditions 
are. 
 
The question of what conditions make measurement possible goes hand by hand with the 
question of what use we can make of the numbers obtained in measurements. Once you 
have measured mass, temperature and hardness of the diamond and the chalk, you may 
want to use these measures to formulate quantitative statements. So you can say that the 
mass of the chalk is one hundred times that of the diamond, while its temperature is only 
twice and its hardness is one-tenth of that of the diamond. The crucial point to realize is 
that not all these statements are meaningful; while the former statement is meaningful, the 
latter two are not. Or to be more precise, all statements mean something, but only the 
meaning of the former depends exclusively on facts about the objects. The three express a 
numerical fact (the quotient of masses is 100, the quotient of temperatures is 2, the 
quotient of hardness is 0.1); but only the first statement expresses something that depends 
exclusively on the objects’ properties; the other statements depend on these properties, but 
also on the conventions adopted in the construction of the measurement scale. For this 
reason we say that the first statement is objective while the others are not. Statements 
about quotients of temperature or hardness values are not objective in this sense because 
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such statements may be true if, say, temperature is measured in degrees Celsius but false 
when measured in degrees Fahrenheit. Yet, there are other statements involving 
temperature that are objective. Although the statement that chalk’s temperature is twice 
diamond’s is not objective in this sense, the statement that the difference between the 
chalk’s temperature at noon and at midnight is five times the difference between the 
diamond’s temperature at noon and at midnight is objective. This raises the question of 
why some quantitative statements are objective and others are not. MT answers these 
questions, by investigating the conditions that make measurement possible and by 
studying the extent to which we can use the measures obtained to make objective 
statements about objects. 
 
1.2. Derived and Fundamental Measurement 
 
Measurement, the assignment of numbers to objects to represent their gradual properties, 
can be derived or fundamental. In derived measurement we obtain the desired value of a 
magnitude for an object from other values we already have (values of the same magnitude 
for other objects or of different magnitudes for the same object) and which are related 
with the unknown value in a specific way. For example, we can measure the mass of a 
heavenly body using the mass of a rocket, the change in its trajectory when it travels near 
the heavenly body, and certain mechanical laws that relate these values. Or we can 
measure an inaccessible distance by measuring another, accessible, distances and angles 
and then use certain trigonometric formulae that relate them. Derived measurement is by 
far the most common kind of measurement in scientific practice, but it is immediately 
clear that measurement cannot always be derived. Since derived measurement makes use 
of values that are already measured, measurement cannot (on pain of circularity or 
infinite regress) always be derived; it is necessary to begin somewhere without relying on 
previously measured values. This is what fundamental measurement does. Fundamental 
measurement, although not as common in scientific practice, is absolutely essential for it 
is “where everything begins”. In fundamental, or direct, measurement we obtain the 
desired values with no previous measurements at all directly from qualitative empirical 
data. 
 
Measurement, derived or fundamental, is possible if the measurement systems, i.e. the 
physical systems where measurement is performed, satisfy certain conditions These 
conditions, henceforth referred to as measurability conditions, are the subject matter of 
theoretical investigations, and the theory devoted to studying these conditions is 
Measurement Theory (MT). In derived measurement, the measurability conditions that 
make measurement possible are the empirical laws that connect the unknown with the 
known values (mechanical and trigonometrical laws in the above examples). Since these 
laws (and definitions) are in general studied within their own quantitative theories (e.g. 
mechanics and geometry), there is no specific question for MT to address; that is, there is 
no specific question for MT in connection with measurability conditions for derived 
measurement. This research is done by common quantitative theories, and there is no 
autonomous theory devoted to the foundations of derived measurement. 
 
In the case of fundamental measurement the systems and the conditions or laws are 
qualitative (remember that numerical values “begin” with these). Yet, since the same set 
of qualitative measurability conditions may correspond to qualitative systems with 
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different physical natures, such conditions are not the subject of any particular empirical 
qualitative theory that focuses on a specific magnitude. For example, the measurability 
conditions for fundamental measurement of mass and length are the same. The conditions 
under which fundamental measurement is possible are then the proper subject matter of 
MT, which can then be understood as the theory that investigates the (different groups of) 
qualitative laws that make an empirical system, of whatever physical nature, measurable. 
Of course, this research is not prior in time to the existence of measurement and scales in 
science. Although in some fields, like psychology or economics, research in MT has 
given rise to new kinds of measurement, for the most part MT deals with measurements 
already known (some of them, like mass or length, centuries ago). Therefore, the priority 
of MT has to be understood not temporally but conceptually: MT provides the conceptual 
foundations for, and the ultimate understanding of, direct measurement. 
 
2. The Formation Period 
 
Standard MT is the result of two different and complementary research traditions. The 
first tradition begins with Helmholtz and continues with Hölder and Campbell, and 
focuses on comparative combinatorial systems and real morphisms. The second tradition 
originates in the work of Stevens and his collaborators on scale types, transformations and 
invariance. 
 
2.1. Helmholtz on Alikeness and Additivity 
 
Although measurement has been used in science before Helmholtz, and some 
unsystematic comments about measurement can be found him in the works of some 
philosophers and scientists, Helmholtz is the first one that formulates, addresses, and 
treats systematically the core question of MT: Why can numbers be applied to things? His 
essay “Zählen und Messen erkenntnis-theoretisch betrachtet” (1887) is the first work in 
which this question is explicitly formulated. Helmholtz calls the attributes of objects that 
allow for comparisons magnitudes. When these attributes are expressed by numbers, these 
numbers are the values of the magnitudes and the procedure by which we assign these 
values is the measurement of the magnitude. He then formulates the question for the 
measurability conditions in the following way: “we shall have to investigate in which 
circumstances we can express magnitudes through [...] numbers” (p. 84). 
 
According to Helmholtz, such an investigation must begin with the notion of alikeness. 
This notion captures certain outcomes of an empirical comparison procedure (e.g. putting 
objects in a pan balance). The magnitudes that two objects display are alike if: (i) the 
outcome of the comparison does not change when the order of the objects is inverted, and 
(ii) both objects always give the same outcome when compared with the same third 
object. Two alike magnitudes are thus interchangeable in the comparison procedure since, 
by definition, they give rise to the same outcomes with every other object. Less trivially, 
and more importantly, Helmholtz points out that alike magnitudes may also be 
interchangeable in other contexts (e.g. two magnitudes that are interchangeable in a pan 
balance are also interchangeable in spring balance). These other contexts in which alike 
magnitudes are interchangeable must then be regarded as different manifestations of the 
very same attribute; hence we must “characterize the further effects in which alikeness is 
preserved as effects of that attribute, or as empirically dependent upon that attribute 
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alone” (p. 91). 
 
Note that in Helmholtz’s talk, a magnitude is not the property or attribute itself (e.g. 
mass), but a specific instantiation of the property in an object (e.g. the specific degree to 
which a heavy object exemplifies the property mass). Yet, with the concept of alikeness at 
hand, Helmholtz can easily define the notion of magnitudes of the same type, that is, of 
magnitudes corresponding to the same property or attribute: “magnitudes whose alikeness 
or non-alikeness is to be decided by the same comparison method are termed by us alike 
in kind” (ibd.). He mentions as examples of such kinds weight, length and duration, 
together with their well known comparison methods, i.e. equilibrium, congruence and 
simultaneity. These kinds of magnitudes are just what later authors mean by ‘magnitude’, 
namely the attribute itself capable of being measured. It is worth noting that, from the 
very beginning of MT in Helmholtz’s work, these properties (e.g. mass) are identified via 
a specific qualitative comparison method: a (kind of) magnitude is “what shows up” in a 
particular comparison procedure (e.g. by pan balance). 
 
In order for a magnitude to be capable of measurement, alikeness does not suffice. The 
comparison method so far considered allows us to establish whether two magnitudes are, 
or are not, alike, but if they are not alike it does not give us any measure of their 
difference. According to Helmholtz, if magnitudes have to be completely specifiable by 
numbers, “the greater of the two numbers must be portrayable as the sum of the smaller 
and their difference” (p. 94) , and for this to be possible, there must be some physical 
conjunction “between magnitudes alike in kind [expressible] as an addition” (ibd.). We 
have here the first formulation of the additivity condition; that is, in order for 
measurement to be possible there must exist a physical way of combining objects that 
“resembles” mathematical addition. We will see below how it is possible to measure 
magnitudes for which such an addition-like combination does not exist, but for more than 
half a century the existence of such physical operation was taken as the only way to 
measure quantities directly from qualitative data. 
 
What are the conditions that this physical combination of magnitudes has to satisfy for it 
to “resemble” addition? The first that he mentions is obviously that magnitudes be of the 
same kind, otherwise we would not be combining magnitudes of the same attribute. The 
important conditions are the following. The first is a variant of substitutivity: two alike 
magnitudes are exchangeable in a physical combination; that is, they give rise to alike 
magnitudes when combined with the same third magnitude. The second is commutativity: 
two magnitudes combined in inverse order are always alike. 
 
The next step in Helmholtz’s search for measurability conditions is to define a greater 
than relation. Note that so far the empirical comparison method (e.g. equilibrium, 
congruence, simultaneity) establishes only whether two magnitudes are alike, but if they 
are not alike the method doesn’t establish which is greater than the other. Once we have 
the combination operation, “it now also follows which are greater and which are smaller 
[...], the whole is greater than the parts of which it is composed” (p. 96). That is, the 
compound magnitude is greater than both components. This cannot be considered as a 
definition of greater than for any two magnitudes, but it suggests one which, though not 
explicitly formulated, is implicitly used: a magnitude is greater than another one if there is 
a third magnitude which, when combined with the second one, is like the first. Thus 
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defined, we can now regard Helmholtz’s above “characterization” of the greater-than 
relation as a new measurability condition which has to be added to the ones already listed. 
This new condition is called positivity: the composed magnitude is always greater than 
both components. 
 
We can summarize Helmholtz’s measurability conditions as follows, taking ∼  for 
alikeness, o for the combination operation and ;  for the greater-than relation so defined 
(note that the second implies ∼ transitivity). 
 
(H)  In order for magnitudes of the same kind a, b,c,…  be capable of measurement, 
there must exit a comparison method which determines ∼  and ;  and a combination  
 operation D  so that that the following conditions hold: 
 
 (He1)  a ~ b  iff b ~ a    ∼ symmetry 
 
 (He2)  a ~ b  iff ( a c∼  iff b c∼ ) ∼ substitutivity 
 
 (He3)  a ~ b  iff a c ~ b cD D    D -monotonicity 
 
 (He4) a b ~ b aD D     D -commutativity 
 
 (He5) a b a & a b bD ; D ;    D -positivity 
 
This is Helmholtz’s answer to the question of how fundamental measurement is possible, 
which he raises for the first time. To conclude his main contributions to MT, three final 
remarks are in order. Firstly, although does not Helmholtz address the question of the 
sufficiency of these conditions for the magnitudes to be completely specifiable by 
numbers, he does explicitly mention, although without proof, that the numbers thus 
obtained “only have a proportional value” (p. 89). That is, they have no absolute 
representational value; they only have representational value as far as we express 
proportions or ratios with them; the numbers so obtained are what later on will be called 
proportional scales. Secondly, he also mentions that in some cases it is possible to find 
two different additive operations for which the comparison method that determines the 
alikeness is the same. He mentions the combination of electric wires in series and in 
parallel and, curiously, he says that by the first method we combine resistances while by 
the second we combine conductivities (curiously, since he has said before that if the 
comparison method is the same the magnitude is the same as well). Finally, he mentions 
measurement by components, or vectorial measurement, as a peculiar type of 
measurement assuming that it is possible to additively compose magnitudes of different 
types by means of a single physical operation on the objects and mentions as examples 
velocity, acceleration, force and color. The type of representation involved here is what 
below will be called multidimensional representation. 
 
2.2. Hölder on Axiomatics and Real Morphisms 
 
Helmholtz is the first to ask the main question on how fundamental measurement is 
possible and also to answer it by providing a set of conditions that the system must 
satisfy. Yet, as we have seen, he does not demonstrate that his conditions are sufficient for 
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numerical representation. This was achieved at the turn of the century by Hölder, who 
was the first one to formally study the necessity/sufficiency of a set of conditions for the 
numerical representation of a qualitative comparative-combinatorial system (Hölder 1901; 
only a little later, Huntington (1902) presented a similar result but it was Hölder’s work 
that came to be the point of reference for subsequent research; Wiener (1921) was also 
heading in the same direction, although much later, including some seminal comments on 
the problem, we shall see below, of the empirical inaccuracy of the formal conditions). 
 
The qualitative facts necessary for the representation are those that correspond to a certain 
order relation ; , determined by a comparison method and a certain combination o among 
objects displaying the magnitude. The numerical entities assigned to the empirical objects 
are positive real numbers. The numerical facts which represent the qualitative empirical 
facts are those involving the grater than relation >  and the addition operation + over the 
real numbers. The representation here consists in a complete translation, that is, in an 
isomorphism. Hölder gives seven conditions, or axioms, that the domain D  of objects, 
the qualitative relation “greater than, or equal to” ;  and the qualitative operation o must 
satisfy and demonstrates that these conditions are jointly sufficient for there to be an 
isomorphism from D, ,< >; D  onto Re , ,+< ≥ + > ; that is, for there to be a 1-1 mapping 

f : D Re+→ from the domain of objects into the positive real numbers, so that (i)  a b; iff 
f (a) f (b)≥  and (ii) a b ~ cD  iff f (a) f (b) f (c)+ = . In this sense numbers “represent” 
magnitudes, since numbers assigned to objects are such that qualitative ; -facts among 
objects are “replicated” by quantitative ≥ -facts about the assigned numbers, and the same 
goes for qualitative D -facts and quantitative + -facts. This result is known as Hölder’s 
Theorem. 
 
Among Hölder’s conditions there are two new ones worth mentioning with an eye on 
further developments of MT, namely solvability and Archimedeanity (also referred to as 
the Archimedean axiom). Solvability states that we can always “solve” a qualitative 
difference among objects: if an object is smaller than another, there is a third one that 
concatenated with the first is equivalent to the second: 
 
 (Hö1)  If a b; then there exists c  so that a ~ b cD (solvability) 
 
The Archimedean axiom states that no object is “infinitely” greater than another, that is, 
when an object is greater than another one we can “reach” the greater “replicating” the 
smaller one (i.e. concatenating the smaller one with itself) a finite number of times 
 
 ( nb  b ... b,  n times� D D ): 
 
 (Hö2) If a b;  then there exist n ( N)∈  so that nb a;  (Archimedean axiom) 
 
These are the most important conditions Hölder introduces. Some of his other conditions 
are similar to some we have already seen in Helmholtz, and the rest (formally too 
complicated to discuss here) have almost no empirical meaning. The last-mentioned, 
empirically unrealistic, conditions make Hölder’s Theorem a mainly mathematical result 
with only marginal empirical significance. Nevertheless, suitably modified (to make it 
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applicable to more realistic situations), it contains the nucleus of most of the subsequent 
formal analyses of the conditions that make additive measurement possible. In the spirit 
of Hölder’s work, this analysis can be regarded as establishing the conditions that a 
comparative-combinatorial empirical system must satisfy for there to be an additive 
morphism (not necessarily iso; in general it will be sufficient for it to be a 
homomorphism) of such a system into (not necessarily onto) the real numbers. This idea 
has also inspired MT when it expanded beyond these first, paradigmatic measurement 
systems, and started to deal with non-combinatorial systems and non-additive 
measurability conditions. 
 
2.3. Campbell on Order and Additivity 
 
N. Campbell is widely acknowledged as the main philosopher of measurement in the first 
half of the XXth century. Quite surprisingly, he does not mention Hölder’s results at all, 
not even in his most important and monumental work, Foundations of Science, written 
almost twenty years later (Campbell 1920, re-edited as Campbell 1957, from which I 
quote). The reason for this may be the rather philosophical, not mathematical, orientation 
of his work. Campbell devotes the whole second part of his book to the study of 
measurement in science, where we find a systematic study of practically all the questions 
related to measurement and, among these, the conditions which make fundamental 
measurement possible. This is what concerns us here. 
 
Campbell characterizes measurement as “the process of assigning numbers to represent 
qualities” (p. 267) and explicitly address our main question: “Why can and do we measure 
some properties of bodies while we do not measure others?” (p. 268). His answer 
basically is that measurable properties of bodies “resemble” the properties of numbers in a 
specific way yet to be clarified. This resemblance is analyzed, as in Helmholtz, in terms of 
certain conditions that the empirical system must satisfy. 
 
The first condition is that the property generates, relative to a certain method of 
comparison, a relation ; which is asymmetrical and transitive (i.e. a so-called order 
relation). This relation must be such that if it does not connect two objects, these objects 
must behave with the others in the same way. When this is the case, then we can regard 
; -disconnected objects as alike in magnitude. These three conditions allow for 
“empirically informative” numerical representation such as the representation of hardness 
and (if directly measured without the aid of other magnitudes) density. However, this type 
of representation is not very informative since the difference between the numbers 
assigned “does not represent the physical difference” (p. 274. For a physical difference to 
be representable, mathematical addition must have a physical interpretation; that is, there 
must be a way of combining objects analogous to numerical addition. When this can be 
done, the property may be measured perfectly and definitively: “The difference between 
those properties which can be measured perfectly and definitively, like weight, and those 
which cannot arises in the possibility or impossibility of finding in connection with these 
properties a physical significance for the process of addition” (pp. 277-278). Though his 
view is not always uniform as regards the conditions that physical combination must 
satisfy for resembling addition, he explicitly mentions positivity, commutativity, 
associativity, monotonicity and a property that implies solvability and Archimedeanity 
(but is stronger than their conjunction). We can summarize Campbell’s conditions as 
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follows (where a ~ b not a b &  not b a� ; ; ): 
 
 (Ca1) If a b then not b a; ;  
 
 (Ca2) If a b & b c then a c; ; ;  
 
 (Ca3) If a ~ b then for every c :  a c iff b c; ;  
 
 (Ca4) a b a &  a b bD ; D ;  
 
 (Ca5) a b ~  b aD D  
 
 (Ca6) a (b c) ~  (a b) cD D D D  
 
 (Ca7) a b iff a c b c; D ; D  
 
 (Ca8) a ~ b iff a c ~ b cD D  
 
 (Ca9) If a b then there exists n ( N) so that nb ~ a∈;  
 
It is worth emphasizing that these conditions are intended to be empirical properties of 
qualitative comparison combinatorial systems. Thus, as for Helmholtz, whether or not a 
physical combination D  and a comparison relation ;  satisfy them is a question that only 
experience can decide. 
 
Three additional issues Campbell deals with are worth mentioning. He acknowledges that 
some of these conditions can be deduced from known laws of empirical theories without 
conducting further experiments; for instance, we can deduce from the laws of mechanics 
that pan balances satisfy some of these conditions. Yet, this does not mean that 
fundamental measurement is parasitic on quantitative laws, since our belief in the truth of 
these laws is based on our knowledge that the measurement of weight is possible, and so 
assumes that these conditions are fulfilled. Secondly, Campbell also raises the question of 
how arbitrary or univocal a numerical assignment is, given that the property satisfies these 
conditions. If we consider a single mode of combination, he (informally) demonstrates 
that every two different numerical assignments that represent ;  by > and o by + are 
proportional; that is, one is a multiple of the other. Third, like Helmholtz, Campbell notes 
that there may be more than one mode of combination that satisfies these conditions, and 
also mentions the combination of wires in series and in parallel. But in this case there is 
no additional arbitrariness, for these combinations satisfy the conditions relative to 
different (inverse) ;  order relations. He points out that genuine arbitrariness would 
obtain if the same relation ;  satisfied the same conditions with different combinations, 
although he does not mention any (decades later Ellis will call attention to the linear and 
orthogonal combination of roods for the case of length). 
 
 
 
- 
- 
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