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Summary  
 
This chapter reviews non-Newtonian fluids. A first classification establishes fluids as 
compressible and incompressible, according to their response to an externally applied 
pressure. Then, a general classification of incompressible materials is carried out 
attending their behavior under a force or a deformation. As result, in terms of ideal 
material response, a solid material with viscoelasticity is known as a “viscoelastic 
solid”. In the case of liquids, there is more ambiguity so far as terminology is 
concerned. The terms “viscoelastic liquid”, “elastic-viscous liquid”, “elastic liquid” 
“memory fluid” are all used to describe a liquid showing viscoelastic properties. This 
chapter is focused on the viscous behavior of incompressible fluids under shear stress 
and shear rate leading to Newtonians and non-Newtonian fluids. Liquids whose 
behavior cannot be described on the basis of the Navier-Stokes equations are called 
“non-Newtonian liquids”. In other words, a non-Newtonian fluid is one whose flow 
curve shows an apparent viscosity that depends on flow conditions such as flow 
geometry, shear rate, etc. and sometimes even on the kinematic history of the fluid 
element under consideration. Accordingly, firstly an overview of the non-Newtonian 
time independent behavior (i.e. corresponding to a steady state flow) has been carried 
out. Then, the time-dependent effects will be addressed. Non-Newtonian fluids can be 
phenomenologically modeled. In this sense, several mathematical expressions will be 
described to model non-Newtonian steady-state and time-dependent viscous flows. 
Finally, we have paid attention to a controversial, but with apparent engineering 
applications, rheological parameter: the “yield stress”. 
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Non-Newtonian Fluids  
 
Fluids can be firstly classified as “compressible” and “incompressible” according to 
their response to the externally applied pressure, i.e. whether or not the volume of an 
element of fluid is dependent on its pressure. A second classification of fluids may be 
according to their response to an applied shear stress or shear rate, leading to the so call 
“Newtonian” and “non-Newtonian” fluids (Chhabra and Richardson, 1999). While 
compressibility influences the flow characteristics of gases, liquids can normally be 
regarded as incompressible and their response to shear forces is the main goal of this 
chapter.  
 
1. General Classification of Solids and Fluids 
 
Regarding incompressible materials (not only fluids), they are considered in a more 
general classification attending their behavior under a force or a deformation. Thus, the 
simplest and probably the first relation between force and deformation is Hooke’ law, 
the force is proportional to the deformation (Barnes et al, 1993): 
 

γσ G=      (1) 
 
where σ is the force per unit area or stress, γ is the relative change of strain, and G is the 
constant of proportionality or elastic modulus, which is an intrinsic property of a solid. 
According to this, Hookean materials do not flow and are linearly elastic. Therefore, 
stress remains constant until the strain is removed and the material returns to its original 
shape. Hooke's law can be used to describe the behavior of many solids (steel, egg shell, 
dry pasta, etc.) when subjected to small strains, typically less than 0.01. However, the 
strain range over which the relationship is linear varies greatly, e.g., ≈2-3 for rubbers, 
≈0.2-1 for most polymer gels, ≈1 for gelatin gels, ≈0.003-0.03 for many particle gels 
(yoghurt), and ≈0.0002 for bread dough, margarine, and cast iron. Only brittle materials 
such as cast iron, ceramic products, potato crisps, and several hard biscuits, are linearly 
elastic up to the point where they fracture (Van Vliet and Lyklema, 2005). Robert 
Hooke developed his "True Theory of Elasticity" in 1678 and proposed that "the power 
of any spring is in the same proportion with the tension thereof", i.e. a double tension 
leads to a double extension. This forms the basic premise behind the theory of classical 
(infinitesimal-strain) elasticity (Barnes et al., 1993). 
 
At the other end of the spectrum, Isaac Newton, in the "Principia" published in 1687, 
proposed the following hypothesis for liquids: "The resistance which arises from the 
lack of slipperiness of the parts of the liquid, other things being equal, is proportional to 
the velocity with which the parts of the liquid are separated from one another" (Barnes 
et al., 1993). Thus, for a Newtonian fluid in laminar flow, Newton’s law has the 
following form: 
 

γμσ =     (2) 
 
where, the shear rate, γ ,  may be expressed as the velocity gradient in the direction 
perpendicular to that of the shear force. The force per unit area required to produce the 
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motion is /F A and is denoted by σ  and is proportional to the “velocity gradient” (or 
shear rate). The constant of proportionality, µ, is known as the coefficient of viscosity 
and results from the lack of slipperiness. Gases, simple organic liquids, solutions of low 
molecular weight inorganic salts, molten metals and salts are all Newtonian fluids. 
 
Although Newton introduced these ideas, it was not until the nineteenth century that 
Navier and Stokes independently developed a consistent three-dimensional theory for 
what is now called a Newtonian viscous liquid (Barnes et al., 1993). The governing 
equations for such a fluid are called the Navier-Stokes equations. Moreover, a 
Newtonian fluid possesses a constant viscosity and it also satisfies the complete Navier-
Stokes equations. Thus, for instance, the well-known Boger fluids display constant 
shear viscosity but, also, normal stress during flow (Boger, 1977; Prilutski et al., 1983). 
For that reason, they are considered as non-Newtonian fluids. 
 
As a result, two limiting elastic and viscous behaviors can be considered in terms of the 
laws of Hooke and Newton. Both of them are linear laws, which assume direct 
proportionality between stress and strain, or strain rate, whatever the stress. However, 
phenomenologically, it is possible to provide a wider classification of materials 
according their rheological behavior. As a starting point, we will first consider ideally 
viscous and ideally elastic behavior (Figure 1). However, the range of stress over which 
materials behave linearly is invariably limited. In other words, material properties such 
as rigidity modulus and viscosity can change with the applied stress. The change can 
occur either instantaneously or over a long period of time, and it can appear as either an 
increase or a decrease of the material parameter. 
 

 
 

Figure 1. Material classification in simple shear (adapted from Darby, 1976) 
 
In that sense, material properties often depend on strain or strain rate (non-linear 
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behavior). Moreover, the properties of a material may depend on the deformation time, 
resulting in non-equilibrium behavior. As result, for many materials the effect of a stress 
or strain generally consists of a partly viscous contribution and a partly elastic one; they 
are viscoelastic. The ratio between these two contributions mostly depends on the speed 
of deformation. A portion of the total classification spectrum is shown in Figure 1.  
Moreover, a given material can behave like a solid or a liquid depending on the time 
scale of the deformation process. Then, it will be possible to include a given material in 
more than one of these classifications depending on the experimental conditions. The 
scaling of time in rheology is achieved by means of the “Deborah number”, which was 
defined by Professor Marcus Reiner as follows (Barnes et al., 1993): 
 

rel

obs

De
t
τ

=     (3) 

 
where obst   is a characteristic time of the deformation process being observed and relτ is a 
characteristic time of the material. The rheological behavior of materials with one single 
relaxation time can be classified according to their Deborah numbers: purely elastic or 
solid behavior when De is very high, purely viscous or liquid behavior when De is very 
low, and viscoelastic behavior for intermediate values of De . The important conclusion 
is that the distinction between solid and fluid behavior not only depends on an intrinsic 
property of the material but also on the duration of observation (Van Vliet and Lyklema, 
2005). 
 
Accordingly, a solid may be defined as a material that will not continuously change its 
shape when subjected to a given stress, i.e. for a given stress there will be a fixed final 
deformation, which may or may not be reached instantaneously on application of the 
stress. On the other hand, a liquid as a material that will continuously change its shape, 
that is, it will flow when subjected to a given stress, irrespective of the magnitude that 
stress. 
 
In the same way, the term “viscoelasticity” may be used to describe behavior which 
falls between the classical extremes of Hookean elastic response and Newtonian viscous 
behavior (Figure 1). In terms of ideal material response, a solid material with 
viscoelasticity is invariably called a “viscoelastic solid” in the literature. In the case of 
liquids, there is more ambiguity so far as terminology is concerned. The terms 
“viscoelastic liquid”, “elastic-viscous liquid”, “elastic liquid” are all used to describe a 
liquid showing viscoelastic properties. In recent years, the term “memory fluid” has also 
been used in this connection. Moreover, liquids whose behavior cannot be described on 
the basis of the Navier-Stokes equations are called “non-Newtonian liquids”. Such 
liquids may or may not possess viscoelastic properties. This means that all viscoelastic 
liquids are non-Newtonian, but not all non-Newtonian liquids are viscoelastic (Barnes et 
al, 1993). 
 
Regarding its flow behavior, a non-Newtonian fluid is one whose flow curve shows an 
apparent viscosity, shear stress divided by shear rate, which is shear rate and, 
sometimes, shear time dependent. Accordingly, such materials may be conveniently 
grouped as follows (Chhabra and Richardson, 1999): 
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• Fluids for which the rate of shear at any point is determined only by the value of 

the shear stress at that point at any instant; these fluids are known as “time 
independent”, “equilibrium behavior”, “purely viscous” or “inelastic” fluids. 

• More complex fluids for which the relation between shear stress and shear rate 
depends, in addition, upon the duration of shearing and their kinematic history; 
they are called “time-dependent fluids” or “non-equilibrium behavior”.  

 
This chapter deals with the non-Newtonian fluid behavior, and the discussion will be 
limited to shear deformations. According to the previous general classification, a first 
study of the non-Newtonian time independent behavior (i.e. corresponding to a steady 
state flow) will be carried out. Then, the non-equilibrium or transient flow behavior, due 
to combined time and shear rate effects, will be addressed. Finally, we will pay attention 
to a controversial, but with engineering applications, rheological parameter, the “yield 
stress”. 
 
2. Steady-state Viscous Behavior 
 
2.1. Shear Thinning/Thickening and Structured Fluids   
 
Figure 2 shows a graphical overview of basic relationships between stress and shear rate 
for fluids and fluid-like materials subjected to shear deformation. In practice, a 
combination of these simple relationships can often be observed, particularly when the 
mechanical behavior is studied over a large range of shear rates or stresses. 
 

 
 

Figure 2. Steady-state flow behavior of Newtonian and non-Newtonian fluids. 
 
The simplest relationship between shear stress and shear rate is linear (Figure 2). Fluids 
obeying such behavior are called Newtonian fluids. Only one material parameter, the 
Newtonian viscosity, μ, suffices to define fully their rheological behavior under shear. 
The viscosity is given by the slope of the line, and is independent of shear rate and shear 
time. 
 
Regarding non-Newtonian fluids, the relationship between shear rate and stress is not 
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linear (Figure 2). Then, a shear rate-dependent viscosity is obtained, called apparent 
viscosity, / /η σ γ= . If the fluid viscosity decreases with increasing shear rate, the 
observed behavior is known as shear-thinning; on the contrary, when viscosity increases 
a shear-thickening behavior develops (Figure 3) (Van Vliet and Lyklema, 2005; Barnes 
et al., 1993). 

 
 

Figure 3. Plot, on linear-scale, of the steady-state viscous behavior of Newtonian and 
non-Newtonian fluids. 

 

 
 

Figure 4. Log-log scale plot of the flow behavior of structured fluids. 
 
Probably, the most common type of time-independent non-Newtonian fluid behavior 
observed is shear-thinning. However, most shear-thinning fluids with a complex 
microstructure also exhibit Newtonian behaviors at low and high shear rates. The 
resulting values of the apparent viscosity at very low and high shear rates are known as 
the zero-shear-rate-limiting viscosity, 0η , and the high-shear-rate-limiting viscosity, η∞ . 
Thus, the apparent viscosity of a shear-thinning fluid decreases from 0η  to η∞ , with 
increasing shear rate. Theses fluids are known as “structured fluids” because shear rate 
affects material microstructure and their viscous behavior changes according to such a 
microstructure. Data in a sufficiently wide range of shear rates may illustrate this 
complete viscous behavior (Figure 4). 
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Examples of structured fluids are, for instance, concentrated food emulsions, which 
show a marked non-Newtonian behavior. This behavior has been related to droplet 
deformation, flocculation or the non-Newtonian behavior of the dispersed phase (Pal, 
1998). The general evolution of viscosity with shear rate (or shear stress) shows three 
different regions, a constant viscosity, 0η  , at low shear rates (or shear stress), a power-
law decrease in viscosity, and finally a constant viscosity, η∞  , at high shear rates, 
characteristic of an unflocculated system.  
 
However, the complete structured fluid behavior, showing those three regions, is 
difficult to obtain, and, often, different rheometers are required to achieve this objective. 
An alternative procedure is the use of a master curve. For instance, the combined 
influence of both shear rate and disperse phase fraction (also emulsifier concentration) 
on viscosity was modeled by applying a superposition method, which yielded a master 
flow curve in which the shift factor affecting shear rate was a function of the oil weight 
fraction (Partal et al., 1994). This master flow curve may be fitted to any of the well-
known models used in structured fluid, by including the influence of the dispersed phase 
volume fraction, φ, in the different parameters. 
 
 
- 
- 
- 
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