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Summary  
 
A general overview of the present state of the art in the field of computational rheology 
is reviewed, emphasizing the various numerical challenges that have emerged through 
the material modeling and discretization approaches adopted. There is brief coverage of 
the alternative levels of modeling involved, from macroscopic to mesoscopic, alongside 
the different discrete techniques utilized and the challenges posed by prescribed 
benchmark problems. Progress in the field is described historically through 
consideration of a particular benchmark problem, contraction flow, detailing advances 
in experimental, numerical and analytical developments that illustrate the many 
branches of computational rheology. Several case studies are also presented that 
illustrate some selected applications, covering such interests areas as transient flow 
solutions, kinetic-based models, pressure drop analysis and compressible-viscoelastic 
computations. 
 
1. Introduction 
 
Computational rheology involves the use of numerical simulation for non-Newtonian 
fluid flow in complex geometries, and in particular introduces viscoelastic effects in 
polymeric liquids. For more than thirty years, the subject has been under intense 
development alongside the tremendous increase in computer power, and has now 
reached a state of relative maturity with new horizons ahead. To date, many reviews 
have appeared by an evolving international research community; see for example 
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general reviews by Tanner & Walters, Crochet et al., Keunings, Baaijens, and Walters 
& Webster. 
 
Industrial application remains a principal driving force behind the development and 
advance in computational rheology. Fluids of interest include molten plastics and 
polymer solutions, as well as industrial suspensions, multigrade oils, liquid detergents, 
printing inks and various food and confectionary products. The processes of relevance 
include injection molding, extrusion, coating, mixing and lubrication. The research field 
is strongly motivated, broad in its scope and challenging. This introduces some 
fascinating numerical challenges to computational rheology. Across the broad range of 
application this article is purposely restricted to viscoelastic liquids and contraction 
flow geometries.  
 
The challenge for computational rheologists is to develop accurate, stable and robust 
numerical schemes based on realistic physical-mathematical models. This advancing 
field offers opportunities at different levels. Theoreticians, and material modelers, are 
required to reduce the gap between the several levels of description employed to predict 
polymer dynamics, including the choice of appropriate macroscopic constitutive 
equation, or through molecular modeling. This aids in improved understanding of some 
of the macroscopic flow phenomena observed in non-Newtonian fluid mechanics, such 
as vortex activity and flow instability. Experimentalists wish to improve the design of 
their equipment and experimental procedures through better interpretation of their data. 
This may be advanced by identifying and eliminating experimental deficiencies, such as 
flow heterogeneities. It is the combination of flow experiments and numerical 
predictions that is sought to characterize rheological behavior in complex flows. With 
industrial application and production in mind, improved properties of end-of-line 
products are desired through the combination of computational rheology and computer 
aided design studies. 
 
Polymeric liquids are considered as viscoelastic materials, with their particular 
properties responsible for some extravagant flow phenomena. There is need to analyze 
and predict their flow behavior, through a combination of suitable physical models and 
numerical techniques. The challenge posed by polymeric materials is the broad range of 
time and length-scales separating the relevant atomistic and macroscopic processes 
involved, supplemented by the large number of microstructural entities. Analysis is 
made possible by appealing to a coupling of theoretical models, spanning from quantum 
mechanics to continuum mechanics.  
 
At the micro-structural level, the atomistic approach remains restricted to coarse models 
for polymeric liquid flow in geometries of molecular dimensions, such as considered in 
the wall-slip problem. This is mainly due to the significant computer resources required 
in such simulations. The ultimate aim, here is to solve such flow problems on the 
macroscopic level, yet based on this atomistic approach. 
 
The kinetic theory level is the next level of description of polymeric liquids, where 
stochastic simulation or Brownian dynamics methods are employed. For example, a 
dilute solution of linear polymers in a Newtonian solvent may be described at a 
macroscopic level, by a freely-jointed bead-rod Kramers chain of a number of beads 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

RHEOLOGY - Vol. I - Computational Rheolgy - M.F. Webster, H.R. Tamaddon-Jahromi, and F. Belblidia 

©Encyclopedia of Life Support Systems (EOLSS) 

connected linearly by rigid segments or springs. Increasing the number of beads 
provides model resolution at this level of representation. Kinetic theory models provide 
a coarse-grained description of molecular configurations, wherein atomistic processes 
are ignored. Such a model tackles important features that govern the flow-induced 
evolution of configurations. In recent years, kinetic theory has advanced well beyond 
the classical reptation tube-model proposed by de Gennes (1971, J. Chem. Phys.) and 
further developed by Doi & Edwards (1986, The theory of polymer dynamics, 
Clarendon). An impressive number of recent Brownian dynamics studies have emerged 
based on Kramers chains, bead-spring chains and dumbbells. The interest in such theory 
continues to grow, through which numerical studies have significantly advanced the 
understanding of polymer dynamics in general.  
 
Under the widely utilized continuum mechanics approach, the fluid microstructure is 
not explicitly taken into account. The combination is forged between a suitable 
constitutive equation (differential or integral) which reflects material response under 
deformation, with the governing equations of motion for viscoelastic fluids; typically 
for isothermal incompressible flow, those of continuity and momentum equations. The 
resulting system is solved commonly through space-time partial differential equations, 
in the form of non-linear, mixed-type parabolic-hyperbolic equation systems. Some 
constitutive equations applied in continuum modeling have originated from molecular 
models and kinetic theory. This is typified through the pom-pom constitutive equation, 
which was developed for branched polymer architectures. 
 
It is the coupling of the coarse-grained molecular scale of kinetic theory to the 
macroscopic scale of continuum mechanics that constitutes the micro-macro approach 
to computational rheology. The micro-macro approach is much more demanding upon 
computer resources than more conventional continuum simulations, allowing for the 
direct exploitation of kinetic theory models, and hence, avoiding potentially harmful 
closure approximations. Under the micro-macro methodology, appropriate distributions 
of configuration spaces for molecular orientation must be sought, while under the 
continuum assumption, an integration of a constitutive equation is applied to evaluate 
the viscoelastic contribution to the stress tensor. 
 
Recently, alternative approaches have begun to appear in the computer modeling of 
polymeric liquids covering a pore-scale description of flow. The attraction of such 
approaches is their inherent particle-based construction, resulting in meshless schemes. 
Here, only two formulations are cited: dissipative particle dynamics and Lattice 
Boltzmann modeling. Both such methods are increasing in popularity and beginning to 
tackle the more complex problems of serious interest to the field. 
 
In the rapidly evolving research area of computational rheology, there is an overarching 
requirement to quality assess any numerical method proposed. This has led the field to 
establish a set of benchmark problems, each exposing particular features of interest, and 
against which the properties of a numerical scheme may be judged. Some of these 
problems are introduced and discussed in Tanner (Engineering Rheology, 2000). The 
selected benchmarks outlined with their features are: flow around a sphere in a tube, 
flow past a cylinder, flow near sharp corners and separation points, entry flow such as 
contraction flow, and the extrusion problem. The flow around a motionless sphere in a 
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tube is a geometrically smooth problem, yet numerical failure occurs for this problem at 
relatively low levels of elasticity. This is caused by the emergence of a thin stress 
boundary layer in the wake region beyond the sphere and the drag exerted on the sphere 
itself. Some experimental observation (as in Walters & Tanner, 1992) has suggested 
that drag reduction is caused by shear thinning, while fluid elasticity triggers drag 
enhancement. In this regard, drag calculation has become accepted as a useful means to 
assess numerical precision and to distinguish between the performance of a wide variety 
of predictive techniques. In a similar manner, drag characterization has been utilized in 
the alternative configuration of flow around a cylinder in a channel. Alternatively, flow 
near corners and separation points introduces additional numerical difficulties, such as 
typified in the stick-slip flow problem. This problem exhibits steep stress gradients that 
necessitate rigorous mesh refinement procedures. Similarly, entry flow problems such 
as contraction flows, present yet further numerical complexity, where the contraction 
ratio is a parameter of choice, popularly selected as four. In addition to the presence of 
the stress singularity at the re-entrant corner for abrupt contractions, this problem offers 
features of vortex enhancement/inhibition and pressure loss at the entry as further 
means to evaluate predictive precision. Moreover, the availability of asymptotic 
analytical solution for velocity and stress near the singularity for certain models, such as 
Upper Convective Maxwell, Oldroyd-B and Phan-Thien/Tanner models, validates mesh 
convergence findings. Stress singularity is also observed in the extrusion problem, 
alongside a free-surface to the extrudate. Here, the singularity is related to the change in 
the boundary condition at the exit of the die (transition from stick to slip), and further 
complication arises through the discrete treatment of the free boundary condition on the 
jet. This necessitates tracking of the free-surface, which is a challenging task even for 
relatively simplistic material properties. 
 
In this coverage of the wide subject matter on computational rheology, attention is 
purposely restricted to focus upon applications of interest and features that arise through 
one of these benchmark problems, that of contraction flow. The merits and features of 
this problem are drawn out historically, through the many branches of computational 
techniques that have developed. In order to introduce the discrete treatment of such 
problems, there is brief coverage of various aspects involved in material and flow 
modeling. Several case studies on this benchmark problem illustrate some novel and 
current topics of interest, including: the prediction of some transient flows, solutions 
with pom-pom models, pressure drop analysis and viscoelastic-compressibility 
computations. 
 
2. Flow and Governing Equations 
 
The formulation of constitutive equations is essential in order to predict the behavior of 
viscoelastic materials in many complex and industrial flows including those involving 
polymers, colloids, foams, and gel processes. There is need here to provide a brief 
overview of this wide topic, so that motivation and background introduces the 
computational aspects to follow. Being a rapidly growing and industrially important 
field, rheology plays a significant role in polymer processing, food processing, coating 
and printing, and many other manufacturing processes. In the early days, the so-called 
Upper-Convected Maxwell (UCM) and Oldroyd-B models (implicit in stress) were 
strongly favored. This was partly due to the fact that they assumed the ‘bottom-line’ of 
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acceptable mathematical simplicity, whilst also being able to mimic the complex 
rheometrical behavior for a class of polymer solutions, known as Boger fluids, which 
became popular in the late 1970s.  
 
To establish a rheological equation of state, the principle of material objectivity states 
that such an equation remains unchanged under a change of frame, even if the frame is 
time dependent. Then, if one assumes that the present response of a material is 
dependent upon its past history of deformation, the constitutive equation assumes a 
relationship between stress and history of response of the material for all times in the 
subsequent past. Based upon continuum modeling, the Cauchy stress tensor ikσ  may be 
represented as  
 

ik ik ikp Tσ δ= − +  , (s) (p) ,ik ik ikT T T= +  (1) 
 
where p is an arbitrary isotropic pressure, ikδ  the Kronecker delta, and ( )ikT is an extra-
stress tensor that may be split into viscous (s)( )ikT  and polymeric (p)( )ikT  contributions. 

(s)
ikT  may be described by a generalized Newtonian model, with a viscosity ( )η  

dependent on second and third invariants, 2I  and 3I , of the deformation-rate tensor 
†d ( ) / 2= ∇ +∇u u , as 

 

( ) ( ) ( )(s) 212 , 2 , tr d , det d .
2ik ikT dη= Γ = = =2 2 3Γ,Σ I I I  (2) 

 
The generalized variable Γ  can be identified as a shear-rate ( )γ  in a steady simple 

shear flow. Similarly, 3 /= 3 2Σ I I  can be identified as an extension-rate ( )ε  in a steady 
uniaxial extensional flow.  
 
The specific form of η ( )Γ,Σ  is model dependent. Various forms are commended from 
constant, to shear dependent, to extensional dependent, and blends of both. 
 
To appreciate some of the properties of non-Newtonian fluids under flow, it is useful to 
consider classical viscometric flow conditions. So, for example, the velocity field 

( ), ,u v w=u  and deformation-rate tensor d  under simple shear deformation are given 
as: 
 
( )

0
0

u y y
v
w

γ=
=
=

     and     
0 0

1 0 0 .
2

0 0 0

γ
γ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

d   (3) 

 
Here, other properties that vary between Newtonian and non-Newtonian fluids are the 
first and second normal stress difference, 1N  and 2N , with respective coefficients, 

1 2 and ψ ψ . Their magnitudes are zero for Newtonian fluids, whilst for non-Newtonian 
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fluids, their definitions are: 
 

( ) ( ) 2
1 1xx yyN γ σ σ ψ γ γ= − = ,   

( ) ( ) 2
2 2yy zzN γ σ σ ψ γ γ= − = .  (4)  

 
This normally leads to relations, 1 0N >  and 1 2N N>> .  
 
Similarly, the velocity field ( ), ,u v w=u and deformation-rate tensor d  in uniaxial 

extensional flow can be expressed as a function of extension-rate ( )ε as: 
 
( )
( )
( )

1
2

1
2

x = x

y =- y

z =- z

u ε

v ε

w ε

     and     1
2

1
2

0 0
0 - 0 .
0 0 -

ε
ε

ε

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

d  (5)  

 
Here, the resistance to flow, or extensional viscosity ( ) ,Eη  is then expressed through 
the relationship, 
 

( )Exx yy xx zz η ε εσ σ σ σ− = − = . (6) 
 
For a Newtonian fluid, Eη  is constant under all strain-rates, and  is simply three times 
the shear viscosity ( )Sη : 
 

E S 3η η=  . (7) 
 
Additionally, all fluids, including those with viscoelastic properties, satisfy relation (7) 
at low deformation-rates, that is, ( ) ( )E S0 3 0η ε η γ→ = → . A further related quantity 
of interest is the so-called Trouton ratio (Tr ), defined as the quotient of extensional and 
shear viscosities. In order to relate γ  and ε  to evaluate shear and extensional 
viscosities, one may define the Trouton ratio in the form: 
 

( )
( )

E

S

.
3

Tr
η ε

η γ ε
=

=
 (8)  

 
For inelastic fluids with shear-dependent viscosity, Tr  is three for all values of ε , and 
for viscoelastic fluids this ratio is anticipated to satisfy: ( )0 3Tr ε → = . In contraction 
flows, pure extension takes place along the centerline. In axisymmetric configurations 
this elongation is uniaxial, whilst in 2D planar flows, such deformation is that of planar 
extension, where the fluid sample is stretched in one direction and compressed in 
another, leaving one dimension unchanged. Expressions for extensional viscosity and 
Trouton ratio in planar extension are similar to those for uniaxial flow, 
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E S 4η η=            (Newtonian), 

( ) ( )E S0 4 0η ε η γ→ = →   (Viscoelastic),   

( )
( )

E

S 2
Tr

η ε
η γ ε

=
=

,  (9) 

( )0 4Tr ε → =            (Viscoelastic).           
 
Assuming isothermal condition for simplicity, the governing differential equations for 
viscoelastic flow may be represented through those for mass-conservation and 
momentum-transport, in conjunction with equations of state for stress and density 
(compressible flow). As such, the flow equations governing continuity and momentum 
balance may be expressed as: 
 

( ) 0
t
ρ ρ∂
+∇⋅ =

∂
u ,          

( )s s
s

22 d
3

p
t

κρ η η
η

⎛ ⎞⎛ ⎞∂
= ∇ ⋅ + − ∇ ⋅ + −∇⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠

u u I τ  (10) 

 
where, ,ρ  ,u  and τ  represent density, velocity, and extra-stress, respectively. Viscosity 
material parameters of η , pη  and sη , represent factors of total, polymeric-fraction and 
solvent-fraction, respectively, where p sη η η= + . κ  is a generalized factor that mimics 
the role of bulk viscosity. Bulk viscosity arises as a consequence of active rotational and 
vibrational modes at the polyatomic molecular level, relevant in compressible gas or 
granular matter flow. For convenience, ( )sτ  can be introduced as being the augmented 
solvent stress referenced within the momentum equation,  
 

( )( ) 22 .
3

s
s s

s

κη η
η

⎛ ⎞⎛ ⎞
= + − ∇ ⋅⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

d u Iτ   (11) 

 
Clearly, considerable simplification results under incompressible flow conditions 
(constant density). To complete the set of governing equations for compressible flow, it 
is necessary to introduce an equation of state to relate density to pressure. Here, for 
example, one may employ amongst others, the modified Tait equation of state a well-
established formulation for liquids, 
 

0 0

m
p B
p B

ρ
ρ

⎛ ⎞+
= ⎜ ⎟+ ⎝ ⎠

, with augmented pressure s1 tr τ 2 d .
3

p p η
η

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (12) 

 
Parameters B and m  are constants, and 0p , 0ρ  denote reference scales for pressure and 
density. Note that, this state law is often approximated to a linear form with index m set 
to unity. 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

RHEOLOGY - Vol. I - Computational Rheolgy - M.F. Webster, H.R. Tamaddon-Jahromi, and F. Belblidia 

©Encyclopedia of Life Support Systems (EOLSS) 

To extend incompressible algorithms to deal with compressible flows, it is important to 
appreciate the key role that pressure plays in a compressible flow. In the low Mach 
number ( )Ma  limit, where density is almost constant, the role of pressure is to 
influence velocity through the continuity equation, so that conservation of mass is 
satisfied. Indeed, in this instance, density and pressure are only weakly-linked variables. 
To recast an incompressible scheme into one appropriate for weakly-compressible 
highly-viscous flow, one may replace the temporal derivative of density in the 
continuity equation with its equivalent in pressure, appealing to an equation of state. 
Assuming isentropic conditions, and employing the differential chain rule, one gathers, 
 

2
( , )

1

X t

p p
t p t c t
ρ ρ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
,   

2
( , )

( )
X t

p m p B c
ρ ρ
∂ +

= =
∂ ∂

,  (13) 

 
where, ( , )X tc  introduces the speed of sound, a field variable distributed in space and 
time, often interpreted as a ratio formed with fluid velocity and expressed through the 
Mach number /Ma u c= . This switch of representation between density and pressure 
time derivatives has a major impact in pressure-correction algorithms governing the 
continuity-pressure equation (see discussion below). 
 
Using general physical principles, constitutive equations have been derived to relate the 
state-of-stress to the history-of-deformation in a material. Yet, in order to obtain 
quantitative agreement with experimental data, realistic models are required that are 
capable of well representing the rheometrical response of actual fluids. Typical 
examples would include: Phan-Thien/Tanner (PTT), Giesekus, and the Kaye-Bernstein-
Kearsley-Zapas (K-BKZ) models, which are phenomenological constitutive equations 
commonly used to model polymer melt behavior. Characteristically, the Giesekus 
model in extensional deformation sustains hardening with increase in strain-rates, yet 
ultimately, reaches a plateau. A modified multi-mode K-BKZ model has also been 
developed that successfully predicts contraction flows of LDPE melts. Moreover, PTT 
models can reproduce a variety of rheological responses in both planar and uniaxial 
extension, though the parameter controlling the degree of extension, PTTε , also affects 
shear-viscosity properties. In addition, eXtended Pom-Pom (XPP) models are capable 
of reproducing the response of polymeric systems in rheometrical flows. These versions 
are derived from the kinetic-based pom-pom model introduced by McLeish & Larson, 
based on reptation dynamics of an idealized linear molecule with an equal number of 
branched arms at both ends.  
 
Here to supply a concrete example, one may employ a generalized formulation to 
express the relevant constitutive law. The notation encompasses the Single eXtended 
Pom-Pom (SXPP) model, which requires a set of additional parameters ( ), , ,qε λ α , 

selected to represent system entanglement ( )ε , number of side-branch arms to the 

backbone segment ( )q , stretch of the backbone segment ( )λ , and anisotropy of the 
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polymeric network ( )α . With s
s s

s p

/ ηβ η η
η η

= =
+

, such a generalized constitutive 

equation statement covers a series of models, taking the form: 
 

( ) ( ) s
s

(1 ), , 2(1 ) .
(1 )

s Wif Wi g
Wi
β αλ λ β

β

∇ −
+ + + ⋅ = −⎡ ⎤⎣ ⎦ −

I dτ τ τ τ τ τ  (14)  

Here, I is the unit tensor, 
∇

τ represents the upper-convected material derivative of τ , and 
the convected derivative is expressed as  
 

†. ( . .( ).
t
∂

= + ∇ − ∇ + ∇
∂

u u) u
∇ τ
τ τ τ τ  (15) 

 
The generalized functions ( , )f λ τ and ( , )g λ τ categorizing the choice over models. 
Table 1 provides the classification through functions { }( ), ,f g λ τ  and setting of ( )α -
parameter to distinguish between Oldroyd-B, PTT and SXPP fluids. 
 

Model f ( , )τλ  g( , )τλ  α  

Oldroyd B( )τ−  1 0 0 

LPTT( )τ  

s

1 tr( )
(1 )

PTTε Wi τ
β

+
−

 
0 0 

EPTT( )τ  
exp[ tr( )]

(1 )
PTT

s

ε Wi τ
β−

 
0 0 

SXPP( )τ  f ( , )τλ  f ( , ) 1τλ −  α  

 
Table 1. Classification of functions; ( , )f λ τ , ( , )g λ τ  

 
The definition of function ( , )f λ τ  is all important to this class of models, being 
 

( ) ( ) ( )
2

2
s

12 1 1, 1 e 1 tr .
(1 ) 3

Wif
ν λ αλ

ε λ λ β
− ⎛ ⎞⎧ ⎫⎛ ⎞ ⎜ ⎟= − + − ⋅⎨ ⎬⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎩ ⎭⎝ ⎠

τ τ τ  (16) 

 
In the expression for ( ),f λ τ , the free parameter ν  is estimated by data-fitting and 
found to be inversely proportional to the number of side-branch arms to the molecular 
chain-segment ( )2 / qν = . With the single-equation form of the pom-pom model, the 
backbone stretch parameter λ  is identified through an algebraic expression, 
 

( )11 tr
3 (1 )s

Wiλ
β

= +
−

τ .  (17) 
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Essentially, this formulation collapses the double-equation version of the pom-pom 
model (DXPP), where a differential equation dictates the change in ( )tλ . The pom-pom 
model has been derived to characterize the rheological behavior of polymer melts with 
long side-branches, such as applicable for low density polyethylenes. In addition, this 
model possesses features of the Giesekus model since a non-zero second normal stress-
difference is predicted when anisotropy parameter 0α ≠ . The Oldroyd-B model 
corresponds to setting ( , ) 1f λ =τ  and, 0α = . Then, the conventional definitions of 
group numbers, in Reynolds (Re) and Weissenberg (Wi) numbers, with pom-pom 
parameters sβ  and ε , are defined as: 
  

scaleU LRe ρ
η

= ,  b

scale

UWi
L
τ

= ,  s
s

s 0 bG
ηβ

η τ
=

+
,  s

b

τε
τ

= . (18)  

 
In this notational form, bτ  and sτ  represent the backbone orientation and stretch 
relaxation time-scales, respectively. 0G  is the linear relaxation modulus and the 
parameter ε  is the ratio of stretch to orientation relaxation times. Typically, re choice of 
scales and for contraction flows in particular, the characteristic velocity (U) and length 
( scaleL ) scales are frequently taken as the downstream mean velocity and channel half-
height, respectively. For simplicity in the case of pom-pom models, pη may be defined 
as p 0 bGη τ=  to preserve similarity between the versions of Oldroyd-B and SXPP 
models.  
 
In contrast to the above instantaneous differential view, integral constitutive models 
provide an alternative description of non-Newtonian elastico-viscous response, that 
incorporate the past history of deformation. In this formulation, the Cauchy stress ikσ  
may be represented as, 
 

( ') ( ( ', )) '
t

ik ik ikp h t t g d t t dtσ δ
−∞

= − + −∫  (19) 

 
where t  and 't  are present and past times of the fluid element flowing along its 
trajectory, h  is the memory function of linear viscoelsticity, and g is a model-dependent 
non-linear strain measure. Such an approach gives rise to integro-differential systems to 
solve, necessitating integral evaluation along fluid element trajectories throughout the 
past history of deformation. Each of these approaches has its merits and drawbacks – 
preference is given henceforth to the differential view, that is pursued below. 
 
 
 
- 
- 
- 
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