
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

RHEOLOGY – Time-Dependent Behavior of Solid Polymers – I. Emri and M. Gergesova 

©Encyclopedia of Life Support Systems (EOLSS) 

TIME-DEPENDENT BEHAVIOR OF SOLID POLYMERS 
 
I. Emri and M. Gergesova 
Center for Experimental Mechanics, University of Ljubljana, Ljubljana, Slovenia, and 
Institute for Sustainable Innovative Technologies, Ljubljana, Slovenia 
 
Keywords: Solid polymers, time-dependent behavior, FMT model, free volume, glass 
transitions, pressure effects, rate processes, shift functions, temperature effects, time-
temperature-pressure superposition, WLF model, CEM measuring system. 
 
Contents 
 
1. Introduction 
1.1. Time Dependence 
1.2. Rheodictic and Arrheodictic Behavior 
1.3. Time-Dependent Response 
1.3.1. Viscoelastic Functions 
1.3.2. Viscoelastic Constants 
2. Rheological Models 
2.1. The Maxwell and Voigt Models 
2.2. The Models of the Standard Linear Solid 
2.3. The Models of the Standard Linear Liquid 
2.4. The Wiechert and Kelvin Models 
3. Material Functions Expressed in Terms of Relaxation and Retardation Spectra 
3.1. The Standard Response Functions in Terms of the Continuous Spectrum 
3.2. The Standard Response Functions in Terms of the Line Spectrum 
4. Determination of Discrete Spectrum Using the Windowing Algorithm 
4.1. Definition of the Window 
4.2. The Algorithms for the Time-Domain Material Functions 
4.3. The Algorithms for the Frequency-Domain Material Functions 
4.3.1. The Algorithms for the Storage Functions 
4.3.2. The Algorithms for the Loss Functions 
4.4. The Algorithms in Presence of Major Experimental Errors 
5. Material Characterization 
5.1. Response to Step-Function Input 
5.1.1. Specific Constitutive Responses (Isotropic Solids) 
5.2. Response to Harmonic Excitation 
5.2.1. Hysteresis Experiment 
6. Interrelations between Frequency- and Time-Domain Material Functions 
6.1. Approximate Interrelations between Frequency and Time-Domain Material 
Functions 
7. Mixed Uniaxial Deformation/Stress Histories 
8. The Effect of Temperature and Pressure 
8.1. The Doolittle Equation 
8.2. The Williams-Landel-Ferry (WLF) Model 
8.3. The Filler-Moonan-Tschoegl (FMT) Model 
 
9. The Effect of Moisture and Solvents on Time-Dependent Behavior 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

RHEOLOGY – Time-Dependent Behavior of Solid Polymers – I. Emri and M. Gergesova 
 

 
©Encyclopedia of Life Support Systems (EOLSS) 

 

10. CEM Measuring System 
10.1. The Relaxometer 
10.2. The Dilatometer 
Related Chapters 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
The mechanical properties of solid polymeric materials quite generally depend on time, 
i.e., on whether they are deformed rapidly or slowly. The time dependence is often 
remarkably large. The complete description of the mechanical properties of a polymeric 
material commonly requires that they be traced through 10, 15, or even 20 decades of 
time. The class of polymeric materials referred to as thermorheologically and/or 
piezorheologically simple materials allows use of the superposition of the effects of 
time and temperature and/or time and pressure in such materials as a convenient means 
for extending the experimental time scale. 
 
The chapter reviews the experimental techniques and the mathematical formalism 
needed for the characterization and modeling of the time-dependent mechanical material 
functions, discusses limitations of the existing theories (models), and presents some 
latest developments in the mathematical modeling of viscoelastic material functions. 
 
1. Introduction 
 
Solid polymers and their macro- and nano-composites exhibit time-dependent 
mechanical properties that can profoundly affect the functionality and durability of 
polymer products. The degree of change in the mechanical properties of polymeric 
materials over time depends on many factors. (Time-dependent changes of the 
material's mechanical properties caused by chemical processes will not be discussed in 
this chapter.) These are primarily the temperature, pressure, humidity, and stress 
conditions to which the material is subjected during its manufacture and during its 
application. Therefore, processing parameters, like pressure and temperature, play an 
important role in determining the quality of parts made by injection molding, 
compression molding, extrusion, etc. Unsuitable processing conditions may cause parts 
to warp or crack. These phenomena can occur in manufactured articles even in the 
absence of any mechanical loading, in particular, in the presence of high-modulus 
fillers. Explosions (detonations) represent special cases entailing extremely high 
temperatures and pressures. 
 
The mechanical behavior of polymeric materials is generally characterized in terms of 
their time-dependent properties in shear or in simple tension. The time dependence of 
their bulk properties is almost universally neglected. The effect of temperature on the 
shear and tensile properties of polymeric materials has been fairly well understood since 
about the forties of the last century. By contrast, little effort went into the determination 
of their time-dependent bulk properties and – after initial years of activity – research on 
the effect of pressure lay effectively dormant. This was probably due mainly to the 
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difficulty of making precise measurements at rather small volume deformations. The 
materials used in current applications simply did not appear to require a deeper 
understanding of the time dependence of their bulk properties and of the effect of 
pressure on their time-dependent shear properties to warrant exerting the exacting effort 
required. This situation has now changed. The demand for sustainable development 
(Sustainable development aims at preserving, for the benefit of future generations, the 
environment and the natural resources culled from it without lowering currently 
excepted standards of living.) requires optimization of the functional and mechanical 
properties of new multi-component systems such as composite and hybrid materials, 
structural elements, and entire structures. Optimization of material use requires a much 
deeper understanding of the effect that temperature and pressure exert on the time 
dependence of the bulk as well as the shear properties of the constituents of these 
materials than is currently available. 
 
Since about the 1980s there have been some highly significant changes in what needs to 
and what can be achieved in characterizing materials with time-dependent properties, 
notably polymeric materials. On the one hand there has been a tremendous increase in 
the use and variety of polymer-based materials such as multicomponent materials (e.g., 
macro- and nano-composites and hybrid materials), multiphase (multidispersion) 
materials (e.g., block and graft copolymers, and polyblends), as well as semi-crystalline 
engineering materials, all of which require new or improved methods of 
characterization. On the other hand, there have been notable advances in the availability 
and sophistication of state-of-the-art sensors, and of methods of data acquisition and 
manipulation. Characterization of solid polymeric materials in an efficient and easily 
applied manner is now possible. 
 
 
 
1.1. Time Dependence 
 
Why should we be concerned about time-dependence? Simply put: the mechanical 
properties (and many other physical properties: dielectric, optical, etc.) of ALL materials 
are time-dependent, i.e., they vary with time in response to an applied load or 
deformation. This phenomenon is simply a consequence of the Second Law of 
Thermodynamics according to which a portion of the imparted energy of deformation is 
always dissipated as heat by viscous forces even while the rest may be stored elastically. 
The dissipation is neither instantaneous nor infinitely slow and is therefore a rate 
process. It is this that renders the physical properties time-dependent. Time-dependent 
behavior may be virtually purely elastic (no dissipation) to virtually purely viscous 
(instantaneous dissipation), or it may be anything in-between. The behavior of 
polymeric materials typically falls between the extremes and is therefore viscoelastic. 
The behavior may be expressed suitably by the Deborah number, D e , the ratio of the 
material time scale, matξ , on which molecular rearrangements take place, to the 
experimental time scale, expt , 
 

mat expDe tξ= .  (1) 
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For a purely elastic material, De = ∞ , for a purely viscous one, 0De = , and for a 
viscoelastic material, 1De ≅ . Viscoelastic behavior is thus characterized by material 
functions of time – or, equivalently, of frequency – in addition to certain material 
constants. 
 
1.2. Rheodictic and Arrheodictic Behavior 
 
An important fundamental distinction exists in polymeric materials between rheodictic 
(from the Greek “rheos”, a flow, and “deiktikos”, to be able to show) and arrheodictic 
behavior. The first refers to a material that is capable of displaying steady-state flow, 
i.e., can deform (in theory) indefinitely. Typically, uncross-linked polymers and 
polymer melts are rheodictic materials. Conversely, an arrheodictic material is one that 
cannot exhibit steady-state flow. Cross-linked rubbers are typically arrheodictic 
materials. In these the cross-links between the polymer chains prohibit indefinite 
deformation. 
 
1.3. Time-Dependent Response 
 
A mathematical expression embodying the manner in which a material responds to an 
applied excitation is called a response function. Response functions fall into two main 
groups. Those that are strain-induced, i.e., arise from the imposition of a strain or a rate 
of strain display relaxation behavior because the stress that they evoke relaxes with 
time. Those that are stress-induced, i.e., arise from the imposition of a stress or a rate of 
stress display retardation behavior because the strain they produce is retarded, i.e., it 
reaches its final value only after an appropriate time. The response to an excitation is 
linear when it obeys two conditions. These are: first, that an increase in the excitation 
increases the response by the same factor. This is stress-strain linearity. Second, a 
sequence of excitations imposed at different times must act independently. This is time 
dependence linearity. It is also referred to as time-shift invariance because, if it is 
obeyed, a shift in the excitation along the time (or frequency) scale shifts the response 
on the same scale by the identical amount without changing it in any other manner. 
 
Of the time-dependent linear viscoelastic response functions we consider primarily 
those that arise in response to the imposition of a unit step function, ( )h t  or in response 

the imposition of a unit slope function, ( )p t , of time. (The unit step function restricts to 

positive values the values of the function it multiplies. The function ( )a h t⋅ represents a 

step of height a  imposed at 0t = . The slope function, ( ) ( )p t t h t= ⋅ , restricts to 

positive values the simple proportionality to t . The function ( )a p t⋅  is a straight line of 
slope tana α= . The imposition of a slope excitation is also called a start-up 
experiment.) The former, i.e., ( )G t , ( )J t , ( )E t , ( )D t , ( )K t , ( )B t , ( )tμ , etc., are 

referred to as step responses while the latter, i.e., ( )tη , ( )tφ , ( )tξ , ( )tβ , ( )tζ , etc., 
may be referred to as slope responses. Both are also referred to as transient responses, 
although this term is sometimes reserved for the step responses. 
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When polymers are exposed to an external load their responses typically consist of an 
essential time-dependent part, the viscoelastic function, and a time-independent part, the 
viscoelastic constant or constants. The latter may, or may not, be absent, depending on 
the particular response function under consideration. Since both the viscoelastic 
functions and the viscoelastic constants represent properties of the material whose 
mechanical properties they describe, they are material functions and/or material 
constants. 
 
We note that, just as any elastic material constant can be expressed in terms of any two 
others, any linear viscoelastic transient response function can be expressed in terms of 
two other transient functions in the same group, and any dynamic response function can 
likewise be expressed in terms of two other dynamic functions taken from the same 
group. Converting a dynamic into a transient function is another matter. As we shall 
demonstrate, all these tasks are most easily carried out with the help of line spectra. 
Section 3 shows how this can be done. 
 
1.3.1. Viscoelastic Functions 
 
The viscoelastic functions are distributions of relaxation times (more correctly, 
distributions of moduli on relaxation time) in response to the imposition of a strain 
excitation, or distributions of retardation times (more correctly, distributions of 
compliances on retardation time) if the behavior is prompted by the imposition of a 
stress. In accordance with general practice, we denote both the relaxation and the 
retardation time by the common symbol, λ . (In the literature it is more common to use 
symbol τ  instead of λ  to denote the relaxation and the retardation times, however we 
have reserved τ  to denote shear stresses) The context almost always makes it clear just 
which meaning is implied. The distributions of response times are commonly referred to 
as spectral functions or simply as spectra. 
 
1.3.2. Viscoelastic Constants 
 
In shear, the viscoelastic constants are eG , gG  on the one hand, and eJ , gJ  and 0

eJ , fφ  
on the other. The subscripts “e” and “g” signify, respectively, the equilibrium and the 
glassy (i.e., instantaneous) shear modulus or shear compliance. In a rheodictic material 

0
eJ  is the steady-state shear compliance while fφ  is the steady-state shear fluidity, the 

reciprocal of the steady-state shear viscosity, fη , the subscript “f” referring to the 
steady-state. In bulk, we have eK , gK  and eB , gB  the equilibrium and the glassy bulk 
modulus and bulk compliance, respectively. There is no steady-state bulk compliance or 
steady-state bulk fluidity because a rheodictic material cannot show steady-state flow in 
a bulk deformation. The same observation applies to the time-dependent Poisson’s ratio. 
 
Analogous symbols denote the corresponding viscoelastic constants for the derived 
response functions. Thus, for example, eE  is the equilibrium tensile modulus, gυ  is the 
glassy Poisson’s ratio, and fζ  is the steady-state elongational viscosity. 
 
2. Rheological Models 
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It is important to realize that force is a secondary (derived) physical quantity which was 
in the past introduced intuitively. In addition to forces generated by the gravitational 
potentials we have forces resulting from the interaction of matter. Refraining to the 
linear theory we may intuitively define three “types” of forces: i) forces proportional to 
the displacement, 1F k x= ⋅ ; ii) forces proportional to the velocity, 2F k x= ⋅ ; and iii) 
forces proportional to the acceleration, 3F k x= ⋅ . It is easy to see that the last equation 
represents the second Newton’s Law, when 3k m= . In the linear theory of 
viscoelasticity we usually neglect the inertial effects; therefore, we will limit our 
discussion to the first two rheological elements. They are commonly represented as 
Hookean spring and Newtonian dashpot, shown in Figure 1. We have replaced the 
force, F , with the stress, σ , and let 1k E= , and 2k η= , where E  and η  are the 
Young’s (Thomas Young, 1775-1829, English physicist and physician) modulus and the 
Newtonian viscosity, respectively. Equivalently we need to replace the displacement, x , 
with the strain, ε , and the velocity, x , with the strain-rate, ε . 

 
Figure 1. Basic rheological elements: a) Hookean spring, and b) Newtonian dashpot 

 
By doing this we find for the Hookean spring, 
 
( ) ( )t E tσ ε= ⋅ ,  (2) 

 
and for the Newtonian dashpot 
 
( ) ( )t tσ η ε= ⋅ .  (3) 

 
We combine basic rheological elements to model more complex behavior. When 
elements are placed in parallel then both elements are exposed to the same strain, and 
stresses may be added, whereas when they are placed in series then both elements are 
exposed to the same stress and the strains should be added. 
 
2.1. The Maxwell and Voigt Models 
 
Combining the two basic elements in series and/or in parallel we can construct different 
complex rheological models. Among those, Maxwell and Voigt models are the simplest; 
this is why we often call them rheological units. They are shown in Figure 2. 
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Figure 2. Basic rheological models: a) Maxwell model, and b) Voigt model 

 
The Maxwell Model 
 
A series of combination of a spring and a dashpot is called a Maxwell model, Figure 2a. 
Since the same stress acts through both elements of the model, and the strains are 
additive, we have 
 

( ) ( ) ( )t t
t

E
σ σ

ε
η

= + .  (4) 

 
This expression, which interrelates the stress, the strain, and the rate of strain, is the 
constitutive equation for the Maxwell unit. Note that it contains time derivatives, so that 
a simple constant of proportionally between stress and strain – must be broadened to 
account for this more complicated behavior. One may define several different modules 
appropriate for various types of loading (excitations). The relaxation moduli, ( )G t  and 

( )E t , and the creep compliance, ( )J t  and ( )D t , mentioned earlier are just two 
examples. It is usually not difficult to obtain these various moduli from the governing 
constitutive equation by solving it as an ordinary differential equation subject to the 
appropriate boundary conditions. In a stress relaxation test, for instance, one has 
( ) ( )0t h tε ε= , and ( ) 0tε =  for 0t > . In this case Eq. (4) becomes, 

 
1 ,d
E dt

σ σ
η

= −                                                                               (5) 

 
and after integration,  
 
( ) ( ) ( )0 M 0 Mexp / exp /t E t tσ ε λ σ λ= − = − .  (6) 

 
Here we introduced a characteristic parameter, M / Eλ η= , with units of time, termed 
the relaxation time. For Mt λ=  we find, 
 
( ) ( )M 0 0exp 1 / e 0.369t Eσ λ σ σ= = − = = ,  (7) 

 
where “ e ” is the base of the Napierian logarithms. The response to a step strain is 
shown in Figure 3a. 
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The relaxation modulus, ( )E t , may be obtained from Eq. (6), noting that the initial 
stress is just needed to stretch the spring to a strain, 0ε . Thus, 
 

( ) ( ) ( )
0

exp /
t

E t E t
σ

λ
ε

= = − .   (8) 

 
 

Figure 3. Response of a Maxwell model to a) a step strain, and b) a step stress 
 
By letting ( ) ( )0t h tσ σ= , we obtain the response of the Maxwell model to a step stress, 
shown in Figure 3b. In this case Eq. (4) reduces to, 
 

0d dtσε
η

= , and after integration 

 

( ) 0
0 .t tσε ε

η
= +   (9) 

 
We find the creep compliance, ( )D t , by dividing strain by the applied stress 0σ , 
 

( ) ( ) 0

0 0

1t t tD t D t
E

ε ε φ
σ σ η η

= = + = + = + ⋅ ,  (10) 

 
where the reciprocal of the viscosity, 1/φ η= , denotes the so called fluidity (readiness 
to flow). The first term, 1/D E= , represents the compliance of the spring, whereas the 
second term, /t tφ η⋅ = , the compliance of the dashpot. From this observation we may 
postulate the following very important rule: When elements are added in series their 
compliances may be added! Later we will use this rule to intuitively derive the creep 
compliances of more complex models. 
 
The Voigt Model 
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In the case of the Voigt model a spring and a dashpot are connected in parallel, as 
shown in Figure 2b. Now the strains in both elements are the same, and the stresses are 
additive, 
 
( ) ( ) ( )t t E tσ ηε ε= + .  (11) 

 
Following the analogous procedure as previously, we may find the responses to a step 
strain, 
 
( ) 0t Eσ ε= ⋅ ,  (12) 

 
and a step stress with magnitude 0σ , 
 

( ) ( ) ( ) ( )0
V 0 V V1 exp / 1 exp / 1 exp /t t D t t

E
σε λ σ λ ε λ∞= − − = − − = − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ , 

 
which are shown in Figure 4, where in Fugure 4a 0 0Eσ ε= . Here V / Eλ η=  is again 
characteristic parameter with units of time, which we will call now the retardation time. 
The relaxation and retardation times are commonly called the response times. With ε∞  
we denote the final value of the strain at t = ∞ . By letting Vt λ=  we find 
 
( ) ( )V 1 1/ e 0.631tε λ ε ε∞ ∞= = − = .  (13) 

 
The corresponding relaxation modulus and creep compliance are, 
 

( ) 0
0

0

E t E Eσ
ε

= = = ,    (14) 

 
and 
 
( ) ( )V1 exp /D t D t λ= − −⎡ ⎤⎣ ⎦ .  (15) 

 
Figure 4. Response of a Voigt model to a) a step strain, and b) a step stress 
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From Figure 3 and Figure 4 we may observe that Maxwell model is capable to represent 
a relaxation behavior, and fails in modeling the creep behavior, whereas the Voigt 
model does well in describing a creep behavior, and fails in modeling the relaxation 
process. Strictly speaking, the two rheological models are not able to model responses 
of real engineering materials. Placing a spring in parallel with the Maxwell unit or in 
series with the Voigt unit remedies this deficiency to some extend, and furnishes what is 
known as models of the standard linear solid (SLS). 
 
 
- 
- 
- 
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