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Summary  
 
There are a number of applications in both technology and nature where interfaces 
between two liquids or between a liquid and a gas play an important role. Often, 
complex molecular species or particulates will accumulate at the interface and render 
the interface in itself a complex two dimensional (2D) viscoelastic fluid. This chapter 
starts off with a review of methods to characterize the rheological properties of 
interfaces. Secondly, some applications of interfacial rheology will be discussed, 
including the use of rheologically complex fluid interfaces to stabilize emulsions and 
the properties of lung surfactants. It will also be shown how 2D interfaces can be used 
to efficiently visualize flow phenomena in certain classes of rheologically complex 
fluids, which remain difficult in 3D.  
 
1. Introduction 
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Amphiphilic molecules and particles that have an affinity to interfaces will collect in 
these regions, possibly even crowd the interface, and give the latter all the structural and 
rheological properties of an – albeit two-dimensional - complex fluid. Such interfaces 
are encountered and their properties exploited in various areas, such a food science or 
chemical technology, in biomedical applications and in medicine. Some material classes 
are characterized by a substantial amount of internal interfaces, such as emulsions, 
foams and polymer-polymer blends, where the dynamics of the interface play an 
important role on the morphological processes that in turn control the bulk materials 
microstructure. Complex fluid interfaces are also omnipresent in many biological 
systems, including cell membranes and the lung surfactants that are present in e.g. 
human lungs. Lung surfactant is a complex mixture of lipids and proteins which lowers 
the surface tension in the lung alveoli to facilitate breathing, the rheological properties 
of the monolayer are important in keeping it in place. Also, current research tries to 
understand if certain respiratory diseases can be linked to lung surfactant composition 
and rheology. It is hence important to be able to measure the rheological properties of 
thin fluid layers to predict the behavior in technological or natural processes. However, 
like bulk rheology, measuring the surface viscoelastic properties can also be used as an 
analytical technique, for example to probe interactions between adsorbed molecules in 
monolayers composed of different polymers or polymer-surfactant mixtures, or to 
measure the interactions between particles.  

 
Figure 1. Shear and dilational deformations at an interface. 

 
The existence of a surface viscosity was first proposed by the Belgian mathematician 
and physicist Joseph Antoine Ferdinand Plateau (1801-1883). By using the magnetic 
field of the earth as an external source, and using a compass needle he studied the 
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damping on bare and surfactant laden interfaces. He concluded that the needle tended to 
damp more when surfactant was present. As a result, Plateau attributed this to the 
existence of a ‘surface viscosity’. However, his experiment was plagued by the 
existence of gradients in surfactant concentration, which led to extra, so-called 
“Marangoni” stresses. Hence he was not able to determine the interfacial viscosity 
quantitatively, only qualitatively. It took until the beginning of the 20th century before a 
French mathematician and physicist Joseph Valentin Boussinesq (1842-1929) described 
theoretically the deformation of 2D liquids. He intended to connect the hydrodynamic 
equations of two fluid phases discontinuously and to develop a 2D rheological theory 
for fluid-fluid interfaces. Moreover, Boussinesq was the first who proposed a linear 
model to describe the interfacial stress tensor based on the surface rheological 
properties. In the 1960’s, a chemical engineer, Prof. L.E. “Skip” Scriven (1931-2007) 
presented an approach where the mobile interface presents itself in problems of fluid 
mechanics through the boundary conditions and he developed a constitutive model for 
Newtonian interfaces. Compared to bulk liquids, where the dilational viscosity of the 
fluids can typically be neglected and only a Newtonian shear viscosity needs to be 
considered, this is not the case for interfaces. Figure 1 shows the two fundamental 
deformations taking place at the interface. With each of them a viscosity can be 
associated. For more complex fluid interfaces, rheological material functions can be 
defined for both types of deformations, along similar lines as has been done for bulk 
liquids.  

 
Current research is trying to establish a rigorous approach for more complex structured 
interfaces. Several devices and measuring probes have been suggested to study 
efficiently interfacial rheological properties. Therefore in this chapter, we will start with 
an overview concerning the present state of our understanding of both shear and 
dilatational deformations in surface rheometry.  
 
Complex fluid interfaces also provide us with an advantage to visualize the interfacial 
flow phenomena. A direct visualization of the relation ship between flow and structure 
can bring some useful insights to rheologists. Probing the integral system in three 
dimensions (by using for example confocal laser scanning microscopy) is difficult, 
especially if one is interested in the dynamics under flow or processing conditions. 
Therefore the three dimensional case is converted to a two dimensional problem. This 
can be done in various ways: pinning particles at a liquid-liquid interface by capillary 
forces, study dynamics in confined conditions, or use the adhesion onto solid substrates. 
However these two dimensional systems can be used to understand three dimensional 
phenomena; they can also be used to understand real-life interfacial issues. For 
example, the coarsening of an emulsion with micron sized droplets results from the 
coalescence of the droplets. To suppress the coalescence, additives (particles, 
surfactants, proteins) are adsorbed at the interface between droplet and bulk medium in 
order to lower the interfacial tension and/or increase the interfacial elasticity. It is clear 
that a good understanding of the dynamics and interactions of the additives at the 
interface can result in a better design of stable emulsions, as was first discussed in the 
early 1980’s by van de Tempel and Lucassen-Reynders, and for example nicely 
demonstrated in the recent work of Georgieva et al. (2009). Fischer and Enri (2007) 
recently reviewed the role of interfacial processes in drop deformation. Also, colloidal 
particles at a flat interface can mimic the properties of atomic systems. Brownian 
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motion studies and collective rearrangements under flow can for example be used for a 
better understanding of mixing processes.  
 
In the present chapter we will first review the measurement methods, subsequently 
discuss some examples of applications and of flow visualization studies.    
 
2. Interfacial Rheometry 
 
The measurement of the interfacial properties is challenging, not only because the 
forces and torques associated with the deformation of an interface will be small, but also 
and more fundamentally because the flow and deformation of an interface will entail 
deformation and flow in the surrounding bulk phases. The intimate coupling between 
the flow in bulk and at the interface is often complex to analyze. Mathematically 
speaking, the rheological properties of the interface appear as a boundary condition in 
the fluids mechanics problem and hence knowledge of the entire bulk velocity field is 
required when analyzing the response of the interface to the resulting interfacial 
deformation. It is possible that the entire response of a measurement device is 
dominated by the bulk – for example a pristine water-air interface - or dominated by the 
interface for densely packed systems. A dimensionless ratio of the two components of 
the drag experienced by a rheological probe can be written as dimensionless group: 
 

surface

subphase

surface dragBo
subphase drag G

η
η

= =
×

                            (1) 

       
where Bo  is the dimensionless Boussinesq number, surfaceη is the surface viscosity 
(Pa.s.m), subphaseη is the subphase viscosity (Pa.s) and G  is a typical length scale of the 
measuring probe (m) being related to the ratio of area of the measurement probe relative 
to the perimeter in contact with the interface. When Bo  is much larger than 1, the drag 
experienced by the measuring probe dominates; when Bo  is much smaller than 1, the 
properties of the surrounding phases are measured. The main goal in surface rheometry 
is to provide adequate sensitivity to detect the interface alone in the presence of these 
lower and upper fluids. When designing an instrument to study sensitive surface 
rheological properties, a small value of G  is thus recommended. In the next sections 
different devices (direct and indirect viscometers) with various measuring probes will 
be discussed, resulting in a variety of sensitivity ranges due to the variety of measuring 
probes. Further information can be found in the textbooks of Slattery (1990), Edwards, 
Brenner and Wasan (1991) and reviews and progress reports in journals from Miller et 
al. (1996), Bos and Van Vliet (2001), Murray  (2007) and Krägel et al. (2008) 
 
2.1. Indirect Interfacial Shear Viscometers  
 
A wide range of techniques and instruments has been proposed. A first category 
consists of experimental techniques based on the displacement of tracer particles at a 
fluid-fluid interface, which must be evaluated using image analysis. The flow type in 
these systems is either a drag flow or a surface pressure driven flow. Although for these 
setups inertia effects at high Reynolds numbers can be taken into account, the necessity 
to introduce and observe tracer particles makes measurements experimentally time 
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consuming. The most known viscometers in this category are the canal surface 
viscometer, the deep-channel surface viscometer, the rotating wall knife-edge surface 
viscometer and the transient rotating cylinder device. For example, the canal surface 
viscometer is based on the determination of the surface film flow rate through a very 
narrow canal under a surface pressure difference, analogous to the Hagen-Poiseuille 
method to study bulk viscosity of fluids. The value of the surface viscosity can be 
calculated by the following equation: 
 

3
subphase

surface 12
aP a

L Q
ηπη
π

×Δ × ×
= −

× ×
                          (2) 

 
where Q  is the film flow rate through the canal of width a  and length L  and PΔ  the 
pressure difference over the canal. In this formula, the subphase drag is taken into 
account. A disadvantage of this setup is that various conditions (smooth walls, no wall 
slip, Newtonian flow, dilational motion at the end of the canal) must be achieved for the 
above formula to be valid. Stone (1995)  nicely showed how the Boussinesq number 
affects the flow profile, and how even for Newtonian interfaces, the velocity profile can 
deviate dramatically from a parabolic one at low Bo . A modern variant of this device is 
a deep-channel surface viscometer, which consists of two concentric, stationary vertical 
cylinders with smooth walls. This setup is shown in Figure 2.  
 

 
Figure 2. Scheme of a deep-channel surface viscometer 

 
The cylinders are placed in such a way that they almost touch a rotating flat-bottomed 
dish. By its rotation with a known angular velocity Ω , the fluid between the channel 
walls will be deformed, and a shear deformation is obtained. When tracer particles are 
placed in the fluid interface in the centerline of the channel they can easily monitored 
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by a camera. The surface viscosity can then be calculated using the experimentally 
measured centerline surface viscosity: 
 

*
subphase

surface -1
a V

V
η

η
π

× ⎛ ⎞
= ×⎜ ⎟

⎝ ⎠
                          (3) 

 
where a  is the channel width, *V is the centerline surface velocity in the absence of a 
film and V  the surface velocity in the presence of a monolayer. 
 
Microrheological measurements, in which the Brownian movement of a submicron 
diameter sphere is used to study the rheology of Langmuir monolayers, have been a 
subject of debate. Yet, given a careful analysis of the Boussinesq problem, 
microrheology provides a sensitive method for measuring the surface rheological 
properties as, for example,  shown by Sickert et al. (2007) and Peng et al. (2009).  
 
2.2. Direct Interfacial Shear Rheometers  
 
In contrast to indirect measurement techniques, the category of direct interfacial shear 
rheometers consists of experimental techniques that measure the torque on a probe 
located within the interface to deform it directly. The oldest direct experimental 
techniques to study interfacial properties were based on a measuring probe coupled to a 
torsion wire such that the probe touches the fluid-fluid interface of a system in a 
cylindrical dish. However these measurements are particularly cumbersome. Most 
rheometers consist of a stationary dish and a rigid coupling between a rotating or 
oscillating measuring probe and motor that detects both torque and displacement, for 
example a standard rheometer for rotational bulk measurements. This setup scheme will 
also be used in the figures below. According to the interfacial probe or geometry, 
different surface viscometer names are used: knife-edge viscometer, blunt knife surface 
viscometer, disk surface viscometer, bicone surface viscometer, double wall-ring 
surface viscometer and magnetic needle surface viscometer.  
 
2.2.1. Knife-edge Surface Viscometer 
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Figure 3. Scheme of a single knife-edge surface viscometer 

 
The first direct interfacial rheometer was based on a single knife-edge probe with a 
circular knife just touching the interface of a solution or dispersion in a dish. This setup 
is shown in Figure 3. For this experimental technique, the knife has to be non-wetting, 
such that it touches the interface, without breaking it. A double knife-edge as well as a 
blunt knife viscometer have also been suggested. However, placing the knife precisely 
at the interface remains a cumbersome manipulation. Also a detailed analysis of the 
fluid mechanics seems to be lacking. 
 
In more recent setups, the knife-edge is replaced by a Pt/Ir Du Noüy ring, a readily 
available geometry typically used to measure interfacial tensions, with a circular cross 
section, as a measuring probe. This can be mounted onto commercial rotational 
rheometers for bulk measurements. The working equations used to analyze the data are 
taken to be equivalent to a Couette geometry. This assumption may however not be 
valid. The gap is wide, causing problems with shear wave propagation and non-
homogeneous stress profiles at the interface, and the flow field in the subphase can be 
very complicated. For the Du Noüy ring, this effect has not been clearly analyzed. For 
rheologically complex fluids this geometry should be used as an indexer, rather then as 
a rheometer. 
 
2.2.2. Disk Surface Geometry 
 
The classical disk surface apparatus is widely used in literature and is commercially 
available. It is  similar to the geometry depicted in Figure 3, except for the fact that now 
a flat disc is touching the interface. This thin, flat circular disk is forced to rotate or 
oscillate within the plane of the interface, by application of a small torque. To facilitate 
the calculation of the surface properties, the exerted torque should again be decomposed 
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in a surface torque due to the interfacial viscosity and a subphase torque due to the 
deformation of the subphase. However, this simple decomposition of the torque only 
holds at large Bo numbers and does not take into account the intimate coupling between 
flow at the interface and in the subphase. In the simplified case, the viscometer can be 
treated as a 2D Couette device and the interfacial shear viscosity can easily be 
calculated from the applied torque with the following proportionality: 
 

3
disk subphase

surface 2
disk

8-
3
4

T R

R

η
η

π

× × ×Ω
=

× × ×Ω
                            (4) 

 
where T  is the applied torque and diskR the radius of the disk. For lower Bo  numbers, 
theoretical results for fluid-fluid interfaces are available in literature, based on the 
calculation of the interfacial and subphase velocity distributions. A variation on the 
viscometer above is the location of a thin, flat disk just below or above the interface. 
The disk can be driven by a rheometer, a torsion wire or a magnet embedded in the disk. 
These devices do suffer of an incomplete analysis of the flow field These geometries are 
also typically limited to the use at air water interfaces.  
 
 
- 
- 
- 
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