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Summary 
 
Microreactors open a novel way of chemical synthesis in a highly controlled way. Due 
to their improved mass and heat transfer, these devices are well suited, e.g., for 
mixing-sensitive, fast and highly exothermic reactions. Endothermic reactions profit as 
well from the improved thermal management. This leads to a better exploitation of 
resources and decrease of energy consumption of chemical processes and will hereby 
increase their costing and eco-efficiency. An additional interesting benefit is the 
enabling to run reactions in a safe way under unconventional process parameters known 
as new process windows. This includes processing at unusually high temperatures and 
pressures - high-p-T processing. In this overview, selected examples from the diversity 
of microstructured components are given and grouped by their scopes of applications. 
This comprises first microreactors or micromixers for liquid / liquid contacting, 
followed by microdevices for gas / liquid contacting and then by catalytic gas-phase 
microreactors. 
 
1. Introduction  
 
This chapter gives a review of the different types of microreactors, their benefits and 
their usage in chemical engineering. First, general characteristics of microreactors are 
discussed [37] - excellent mass and heat transfer, safety issues, diffusion transport etc. - 
in the following, different types of reactors are presented and some examples of use are 
going to be shown. Then, important aspects for industrial application, like cost analysis, 
eco-efficiency analysis and process safety, will be shortly discussed.  
 
In the last years, great efforts have been undergone to carry out reactions at small scale. 
These undertakings led to the field of Micro Process Technology, which includes the 
concept of doing chemistry in a different way by improving and intensifying existing 
processes. Microreactors are typically continuous systems and the microstructure 
dimensions have to be small enough to provide the necessary heat transport and mass 
transfer. The prefix “micro” relates to the inner life of the reactor and not to the 
components that are build around.  
 
There is a wide range of manufacturing techniques from established methods that stem 
from microelectronics [1, 4, 5] up to modern ultra precision engineering and micro 
erosion techniques [1, 6, 7]. These versatile techniques allow a large variation of 
accessible microreactor materials such as steel, metals, silicon, ceramics, etc. as well as 
the lab material classes polymers [1, 8, 9] and glass [1, 10].  
 
The main argument for using microstructured components in a chemical process is 
process intensification [37]. This subsumes first of all order-of-magnitude changes in 
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conversion and selectivity or increased space-time yields, but is more and more used in 
a broader definition addressing also waste reduction, energy savings and better safety. 
Totally, this means having much increased performance at the same reactor footprint or, 
vice versa, shrinking down the reactor dimensions [11]. The preferential way for the 
usage of such microstructured components is to implement them into a running process 
at the point where they are needed or where their benefits can intensify the course (plant 
retrofit approach). 
 
2. General Benefits of Microreactors 
 
There are several benefits of microstructured reactors [12, 37]. The usability of 
microreactors for highly exothermic reactions is based on their large surface / volume 
ratio. Thereby, the heat, which is generated by the reaction, can be transferred very 
efficiently out of the system. This avoids hot spots and the formation of side products, 
as e.g. evident from coloration of the product. Besides, endothermic reactions can be 
heated up to reaction temperature more efficiently than in conventional batch vessels. 
 
Another benefit is to achieve small characteristic lengths for transport of matter in the 
range of a few ten to less than a micron, which accelerates the diffusion transport so that 
operation under intrinsic kinetic conditions can be achieved. This makes 
microstructured reactors well suited for very fast reactions, even when being mixing 
sensitive. Industrial reactors have typically an interface / volume ratio of some 10 m2 m-

3 up to 100 m2 m-3. Conventional lab-scale apparatus comprise typically a few 
100 m2 m-3 and in a few cases have at best 2000 m2 m-3. Opposed to this, the 
surface / volume ratio for microstructured elements is very large up to 20000 m2 m-3 and 
higher. Thus, microreactors are ideal tools for multi-phase reactions, e.g. to work under 
kinetically controlled conditions while keeping the conversion rate at maximum. 
An additional benefit of these small devices is the very low inner volume, which is 
important for process safety, e.g. to limit the damage potential for worst-case scenarios 
in case of a process upset.  
 
The exact defined and short residence times in such systems make it possible to 
optimize selectivity and space-time yield.  
 
3. Selected Types of Microreactors 
 
When categorized by the presence of the phase(s) involved, microreactors can be 
subdivided further by the types of contacting principles typically employed as first step 
to initiate reaction by mixing. Thus, microreactors are grouped here for contacting 
liquid and liquid, gas and liquid or gas and gas phases. In the following, a few examples 
stemming from such classes are given to exemplify the diversity of microreactors for 
the different applications.  
 
3.1. Liquid / Liquid Contactors (Micromixers) 
 
A large number of mixers with different mixing principles are available for contacting 
liquids and liquids. Pure mixing tasks are, e.g., given for making disperse liquid / liquid 
systems such as emulsions or dispersions. Mixing has to be combined to reaction for 
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single-phase or multi-phase organic systems. If the reaction demands more time than 
provided by the mixing chamber (which is common), delay loops such as tubes or 
capillaries are added to the system for completing the reaction. Alternatively, a micro 
heat exchanger-reactor may follow the mixer in case of higher demands on heat 
transport. If a catalyst is required for the reaction, the simplest approach is to fill tubes 
or chambers in microdevices with powders or particles. A more advanced and tailored 
way of catalyst provision, however, is the coating of the channel walls, e.g. by slurry, 
spraying, sol-gel or vapor deposition techniques. Some micromixers with different 
mixing principles are shown in Figure 1. Their special mixing principles are going to be 
explained in the following sub-sections. 
 

 
 

Figure 1: A: Interdigital mixer for diffusion mixing, B: Nozzle (“Star Laminator”) 
mixer for jet mixing, C: Bas-relief (“Caterpillar”) mixer for recirculation 
(convective) mixing (medium and high Reynolds numbers) and split/re-
combination mixing (low Reynolds number), D: Impinging jet mixer for 

collision mixing via jets. (by courtesy of IMM). 
 
3.1.1. Lamination and Hydrodynamic Focusing 
 
Lamination means reduction of fluid distances to an extent that diffusion on its own 
becomes effective (under laminar-flow conditions). Hydrodynamic focusing, typically 
done by geometric constraints, is a simple means to further reduce the characteristic 
dimensions. In this way, mixing times in order of milliseconds and below can be 
achieved. Laminated streams are easily parallelized (multi-lamination) by grouping 
several inlet channels or nozzles. In a typical interdigital micromixer configuration, two 
fluids are fed via two separate channels, split in many sub-streams, which are then re-
positioned so that combination can be done in a central mixing chamber. In this way, 
small lamellae alongside are yielded and further compression of these fluid layers by 
hydrodynamic focusing can follow the lamellae formation. The thickness of the 
lamellae can also be affected by setting the two flow rates of the liquids at different 
levels which uses hydrodynamic compression by virtue of pressure (without geometric 
constraining) [38 - 40]. 
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Scheme 1: Multi-lamination mixing principle of an interdigital micromixer, (by 

courtesy of IMM). 
 
3.1.2. Jet Mixing 
 
One of the first micromixers developed was based on jet mixing. The so called 
micro-plume injection mixer comprised a microstructured hole array used for multiple 
jet injection of one fluid into a continuous flowing phase of another in a mixing 
chamber. The jets enter the flow in an orthogonal (90°) fashion [38, 41]. 
 
This concept has been further developed to a two-array configuration with varying 
position of the impinging jets implemented in one system [38, 42]. The liquid streams 
were fed through arrays of micro nozzles opposite to each other. These arrays can be 
arranged in the way that the nozzles are located face to face to each other or in an offset 
arrangement. Due to this, the generated jets can be brought directly to collision or flew 
aside each other, inducing convection.  
 

 
 

Scheme 2: Schematic of the micro-plume injection mixer design (newly drawn 
following [41]). 
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Scheme 4: Top: Schematic design of the impinging-jet array micromixer, Bottom: Face 

to face and offset nozzle arrays [42] (by courtesy of IOP Publishing Ltd.). 
 
An even higher parallelized arrangement for jet mixing can be achieved when stacking 
many plates with multiple nozzles, as given in the microstructured mixer shown in 
Scheme 3. The fluids are fed through ports parallel to the mixing chamber and 
conducted via openings, centrally arranged in star-shaped format, to the platelet center. 
A breakout in the second type of platelet defines the whole flow conduit giving a 
cylindrical mixing chamber for the whole platelet stack [20, 38]. Due to the high 
number of openings and the low pressure drop by the large diameter of the breakout, 
very high flow rates can be achieved; the current upper limit being about 30 000 L/h 
liquid flow. Mixing is then performed under turbulent conditions. The concept of 
consecutive injection can be simply scaled out by internal numbering-up by increasing 
the stack of platelets, up to several hundreds. Thus, the latter suffices even bulk-
chemical applications. 
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Scheme 3: Microstructured mixer with multiple jets from stacked star-shaped platelets 

and corresponding mixing principle Star Laminator [20] (by courtesy of IMM). 
 
Jet mixers can particularly be applied to precipitations, since a ‘wall-free’ flow guidance 
in free space can be realized, e.g. in vertical position as falling jets. This avoids 
clogging which is otherwise often observed for precipitations in microchannels. When 
the jets are brought into collision, by having a mirror-imaged inclined flow guidance 
leading to a merging point, mixing takes place. In Figure 2, an Y-type impinging jet 
micromixer is shown [38]. The quality of mixing depends on the diameter of the jet 
formed at the outside of the mixer and also on the applied flow rates. 
 
3.1.3. Split-and-Recombine Mixing  
 
This class of mixers uses splitting and recombination of parts of the fluid flow to 
generate and rearrange small fluid compartments, preferably lamellae, to increase 
‘interfaces’ for speeding up mixing. In most mixers, this is achieved by physically 
structuring the flow path so that it itself is split and recombined. 
 

 
 

Figure 2: Stable y-type jets at the outlet of an impinging jet micromixer, (by courtesy of 
IMM). 

Attempts to simplify the mixer design by performing splitting and recombination of the 
lamellae in one larger microchannel suffer from inertia forces. With the exception of 
very low flow rates, these cause deformation of the lamellae so that special measures 
like the insertion of splitting planes are needed here to partly separate the lamellae from 
each other and really have split and recombination (and not to induce flow circulation). 
Thus, this mixing principle will be applicable for high viscous media (very low 
Reynolds Numbers) [38, 43].  
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Scheme 5: Mixing principle of split-and-recombine mixing, e.g. constantly increasing 
the number of lamellae along the flow path [43] (Reproduced by permission of The 

Royal Society of Chemistry). 
 
3.1.4. Recirculation-Flow Mixing In Curved Channels 
 
The zig-zag micromixer exploits recirculation flows for mixing [38, 44]. At sufficiently 
high Reynolds Numbers, recirculation patterns are induced in the edges of the zig-zag 
channels, since the major part of the flow occurs in an alternately curved main stream 
which agitates the surrounding wakes. Liquid is transported in this way perpendicular to 
the original flow direction and improves mixing. 
 

 
 

Scheme 6: A zig-zag microfluidic mixing element [38, 44] (by courtesy of ACS) 
 
Recirculation flow can be also induced by using alternately curved micromixer design 
[38, 45]. Mixing is achieved hereby by the generation of secondary helical flows. When 
liquids are guided through curved channels, the fluid velocity gets it maximum towards 
the outer channel wall and so called Dean vortices are formed. Two counter-rotating 
eddies above and below the channel transverse section of the curved channel and lead to 
fluid transport outwards in this plane by means of centrifugal forces. By recirculation, 
back transport along the channel walls is induced. Thereby, interfaces are constantly 
created and renewed to increase mass transport. A Dean number of ~140 is the threshold 
for given conditions and given channel design as reported in. 
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Scheme 7: top: View of secondary flows taken in flow direction; bottom: sketch of a 
meander channel [38, 45] (by courtesy of AIChE Journal) 
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