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Summary 
 
Reliable process data, such as flow rates, compositions, temperatures, pressures and 
phase fractions, are the key to efficient operation of chemical plants. With the 
increasing use of computers in industry numerous data are acquired and used for on-line 
optimization and control. However, raw measurements are not accurate enough; they 
are affected by random or systematic errors, due to sensor drift, calibration errors, 
instrument malfunctions, leaks and so forth. Hence the measurements cannot satisfy 
exactly material and energy balances or other model constraints. The goal of data 
validation is to reconcile the contradictions between the measurements and their 
constraints, to estimate the true values of measured variables, to detect gross errors and 
solve for some unmeasured variables. Thus one can obtain the required process data 
with high accuracy and reliability, and generate consistent balances for accounting. 
 
Algorithms used to correct random errors and allow closing process balances are 
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discussed, both for steady state and dynamic systems. 
 
Practical applications are described, and the benefits of data validation are illustrated. 
Up to now steady-state data reconciliation and gross error detection began to be applied 
widely in industrial plants in 1980s. This technology is now a mature field with certain 
challenges remaining. The reconciliation for dynamic systems is an active development 
field; however, its on-line application to large industrial systems is still in its infancy. 
 
1. Scope, Aims and Benefits of Data Reconciliation 
 
Nowadays, industrial processes are more and more complex and difficult to master. 
They process large quantities of valuable goods, and thus should be run efficiently to 
avoid wasting raw materials and ensure a high product quality. The operation of many 
chemical plants involves also potentially dangerous operations: strict process 
monitoring is necessary to avoid unsafe operating conditions that could lead to fire, 
explosion or release of toxic components in the environment. The size of the equipment, 
the value of products they transform, the requirements for safety thus dictate that 
processes should be monitored and controlled efficiently. 
 
1.1. Importance of Measurements for Process Monitoring 
 
Efficient and safe plant operation can only be achieved if the operators are able to 
monitor all key process parameters. Instrumentation is used to measure many process 
variables, like temperatures, pressures, flow rates, compositions or other product 
properties. Measuring these variables should allow the operators to verify that the 
equipment is operating according to the design. Without good measurements, the 
operators would be blind: similarly, to drive a car, one needs to see the road, locate the 
car position with respect to obstacles, and know its speed. When visibility is poor, the 
safe decision is to reduce speed, or even to stop the car. In the same way, when 
measurements do not allow assessing a plant operating condition, it cannot be run safely 
at maximal efficiency. 
 
In practice, direct measurements do not provide always all the required information. 
What is needed is an estimation of some performance indicators. These are the variables 
that either contribute to the process economy (e.g. the yield of an operation), or are 
linked to the equipment quality (e.g. fouling in a heat exchanger or activity of a 
catalyst), to safety limits (e.g. departure from detonation limit) or to environmental 
considerations (e.g. amount of pollutant emissions). Most performance parameters are 
not directly measured, and are evaluated by a calculation based on one or several 
measured values. 
 
For instance, a car driver is interested in knowing how much fuel is left in the tank. 
What is measured is the level in the tank. Thus some knowledge about the physical 
plant (here the shape and size of the tank) must be known to calculate the useful value 
(amount of fuel) from the raw measurement. In many cases, several independent 
measurements must be combined to assess the value of some process variable (e.g. the 
mileage for a vehicle is computed from the fuel consumption (based on the variation of 
the fuel tank level, or from a direct flow rate measurement) and from the distance 
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traveled, obtained from an odometer).  
 
However some difficulties arise when one considers experimental errors. 
 
1.2. Sources of Experimental Errors 
 
Experimental data is always affected by experimental errors. No sensor can be built that 
is absolutely exact and accurate. Besides uncertainty linked to the measuring device, 
errors can also arise from sampling or positioning the sensors (e.g. measuring local 
properties in a material that is not homogeneous), from inappropriate calibration, from 
transcription or reporting errors (during signal conversion for instance).  
 
One should make a distinction between permanent bias or systematic errors, and 
random deviations. The overall error results from summing both contributions. 
Systematic errors are related to deficient instrumentation or inexact calibration: an 
example would be using erroneous weights or a chronometer that runs late. No matter 
how careful the measurement is carried out, the error will remain undetected, even if the 
measurement is repeated. The only way out is to compare the measurement with an 
independent assessment using a different sensor, and such a procedure allows then to 
calibrate properly the defective sensor. In other respects random errors are due to a 
multiplicity of causes, and may result from fluctuations in sampling or external 
perturbations (e.g. variation of atmospheric pressure, voltage fluctuations for electric 
instruments). They can be detected by repeating the measurement, and noticing that the 
outcome is different. 
 
Measurement error is the sum of both contributions: systematic and random errors. 
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Figure 1: Comparison between precision and accuracy 

Figure 1 allows illustrating the difference between accuracy and precision, by 
comparing the measurement process with shooting at a target. Accuracy represents the 
systematic departure of the measurement with respect to the true value (usually 
unknown). For the shooting analogy, this could be corrected by adjusting the sight. For 
a measurement, inaccuracy results from instrument bias and improper calibration. 
Precision, for the shooting analogy, is related to the spread of the bullets on the target. 
Low precision results from imperfect instrumentation and variation in operating 
procedures. Precision is linked to the repeatability of the measurement: a clock can be 
very precise (exactly 3600 ticks every hour) and give systematically the wrong time. 
Repeating measurements allows estimating their precision, by assessing the spread of 
their distribution around the average value (assuming that the measured variable 
remains constant during the measurement process). Thus we can expect that 
measurement redundancy is a way to improve the quality and reliability of the 
measurement results. 
 
Random errors that always affect any measurement also propagate in the estimation of 
performance parameters. When redundant measurements are available, they allow the 
estimation of the performance parameters based on several independent data sets; this 
provides different estimates, which may lead to confusion if not properly interpreted. 
Data validation is the method applied to properly exploit measurement redundancy in 
order to improve the assessment of process variables. 
 
1.3. How to Achieve Measurement Redundancy 
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Measurement redundancy can be obtained in several ways. 
 
A first approach is to repeat several times the same measurement using the same sensor. 
This is called temporal redundancy. By taking the average of the measurements, one can 
expect to decrease the uncertainty arising from random errors. In fact, according to the 
theory of probability, the variance of the mean value 2

Xσ  is proportional to the inverse 
of the number of measurements N : 
 

2
2
X N

σσ =  (1) 

 
In a process whose variables are likely to fluctuate with time, measurement redundancy 
can also be achieved by installing multiple sensors in order to obtain several 
simultaneous measurements of the same variable(s). This procedure allows not only to 
reduce uncertainty by averaging the measured values, but also to detect gross errors 
resulting from sensor failures. Such an approach is used for some safety critical 
measurements, coupled with comparison software that implements a voting scheme in 
case contradictory measurements are obtained. However this type of sensor redundancy 
is costly and not applied systematically to all process variables. 
 
Redundancy can also be achieved by using several measurements combinations and a 
process model to estimate the required process variables. To explain this method, we 
need first to evaluate the uncertainty of an estimate when several measurements are 
needed to assess a variable value. 
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Figure 2: Using several measurements to assess a value 
 
An example is shown in Figure 2, where a weight is evaluated by summing two 
measurements. The variance of the estimate is obtained by summing the variance of 
both measurements. 
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For the more complex set up shown in Figure 3, we need to use a model of the set up, 
and use the equilibrium condition to obtain the value of the weight W from the 
measurements 1W  and 3W : 
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Figure 3: Indirect evaluation by combining several measurements 

In general, if a variable W  can be calculated using a model f  and the value of several 
independent measured variables ix , the variance of its estimate will be related to the 
measurement variances, using the following relationship obtained by linearizing the 
model f : 
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The variables appearing in the model need not to be of the same type. In fact, some 
process variables can be estimated in several independent ways. As an example, let us 
consider the case shown in Figure 4. 
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Figure 4: Multiple evaluations by combining several techniques 
 
A flowrate in a pipe can be directly measured as 1F using a flow meter (e.g. using 
Doppler-effect). The flowrate can also be estimated by measuring the pressure drop 
through an orifice, which will provide estimate 2F . It can also be obtained from an 
energy balance, for instance by heating the fluid using electrical power and measuring 
the temperature increase. If the fluid specific heat pC  is known, the flowrate estimate 

3F will be related to the power dissipated Q  and the temperature increase by: 
 

( )p 2 1
3 QF

C T T
=

−
 (5) 

 
A data validation algorithm will provide a way to merge those independent estimates 
and pool their variances in order to provide a consistent value of the flowrate. 
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