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Summary 
 
This chapter highlights the important thermodynamic models available to-date for 
engineering applications, especially those related to petroleum, chemical, material 
(including polymer), and pharmaceutical industries as well as biotechnology. While 
thermodynamic models can be used for calculating a wide range of properties, it is 
especially phase behavior that is emphasized in this work. First, the basic models (cubic 
equations of state and activity coefficient models) are presented with special emphasis on 
the solubility parameters, local composition and group contribution concepts. This section 
is completed with an application of thermodynamics in assessing the fate of persistent 
chemicals and their distribution in environmental ecosystems. Advanced mixing rules for 
the cubic equations of state and the association models based on perturbation theory 
especially the SAFT and CPA equations of state are discussed next. Some results are also 
shown for aqueous and multicomponent systems. Finally, four challenging areas and 
applications are presented; models for electrolytes, thermodynamics in biotechnology and 
for colloids and interfaces as well as in conjunction to chemical reactions. In all areas, case 
studies and examples are presented. The chapter closes with an outlook to the future. 
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1. Introduction – Importance of Thermodynamic Properties  
 
The foundations of thermodynamics are its laws, which are the soundest theory, never so 
far revised. These laws provide a unique framework for describing physicochemical 
phenomena. However, despite their incredible beauty, these laws cannot take us very far 
without thermophysical/thermodynamic data. 
 
Thermodynamic and transport property data are crucial in the oil & gas industries e.g. for 
flow assurance and oil recovery, in the chemical industries e.g. for the design of separation 
processes, in the pharmaceutical and polymer industries e.g. for solvent selection and 
emission control but also in the environmental science e.g. for the estimation of the 
distribution of chemical in various ecosystems and recently also in biotechnology e.g. the 
origin of many diseases is traced to aggregation of proteins and several protein separations 
also require thermodynamic data. 
 
Many separation processes in chemical and biochemical engineering as well as in 
petroleum industries depend on phase equilibrium data. Depending on the application and 
compounds involved, different types of data are needed e.g. vapor-liquid equilibrium 
(VLE) for many distillations, liquid-liquid equilibrium (LLE) for liquid extractions and 
solid-liquid equilibrium (SLE) for crystallization. Accurate design of separation processes 
requires good phase equilibrium data. Prausnitz et al. (1999) mention that, in many cases, 
more than 40% of the cost of the design is related to the separation units. 
 
Many researchers have tried to develop universal or semi-universal thermodynamic models 
which could be used for any type of compound, mixture and condition but this has not as 
yet been possible, as illustrated by the many available thermodynamic models. All the 
existing thermodynamic models are approximate, while most of them are empirical or 
semi-empirical. This is a picture far different from a universal thermodynamic theory. 
 
Some of the most characteristic models will be briefly presented in this chapter. 
Commercial process simulators also offer many model choices, in some cases accompanied 
by “decision trees” for selecting the most appropriate ones, as shown by Carlson (1996). 
The reason why so many models are available/needed is because of the : 
 

• Huge number of very diverse compounds and mixtures: hydrocarbons/oil, alcohols, 
water, polymers, electrolytes, biochemicals, proteins, enzymes,... - in all possible 
combinations !  

• Almost infinite number of conditions (concentration, temperature, pressure) and  
 phases in equilibrium (VLE, LLE, VLLE, SLE, SGE,..), but also due to 

• Different needs in many applications e.g. do we need a detailed design (phase 
diagram) or a qualitative analysis (yes/no answer) and how fast is the answer 
needed? 

• Experimental data are difficult to obtain for all these diverse systems and conditions 
 
Fortunately, there are some “general” concepts or model categories which have wide 
applicability. These are: 

• The cubic equations of state 
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• The corresponding states principle 
• Regular solutions theory and solubility parameters 
• The local composition concept and corresponding models (including the advanced 

mixing rules for equations of state based on these local composition type models) 
• The group contribution concept 
• The free-volume effect (especially for polymer solutions) 
• The association theories 

All these models and concepts will be addressed in this work. 
 
- 
- 
- 
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