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Summary 

 

Biological control using antagonists has emerged as one of the most promising 

alternatives to chemicals to control postharvest diseases. Since the 1990s, several 

biocontrol agents (BCAs) have been widely investigated against different pathogens and 

fruit crops. Many biocontrol mechanisms have been suggested to operate on fruit 

including competition, biofilm formation, production of diffusible and volatile 

antibiotics, parasitism, induction of host resistance, through oxidative stress 

mechanisms of induction and tolerance. Molecular techniques are useful tools in the 

characterization of the microorganisms and enhancement of their biocontrol capabilities, 

through genetic engineering. The biomass production process and the development of 

appropriate stabilization and formulation are key issues to extend the shelf life of the 
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biocontrol product and to develop a commercial biofungicide. The enhancement of the 

biocontrol capability can be achieved through the manipulation of the postharvest 

environment, but also by modifying the physiological or genetic characteristics of the 

antagonists. Several studies were carried out to extend the use of the postharvest 

biofungicides, by applying antagonist mixtures, by using BCAs also in preharvest, or by 

integrating them with chemicals(fungicides, GRAS substances, natural compounds, 

inducers of resistance) and physical (thermotherapy and UV irradiation) means of 

protection. The essential steps bringing to the commercial development of BCAs and 

some key examples of commercial biofungicides will be considered.  

 

1. Introduction 

 

Fruits and vegetables (F&V) are an important part of the human diet, because they 

supply essential nutrients such as vitamins, minerals, and they are important to human 

health and well-being, for their contents in antioxidants and anticancer substances. An 

increasing awareness by consumers that diet and health are linked resulted in a greater 

consumption of F&V. At the same time, consumers are also more concerned about the 

safety of the F&V they eat, and they ask for food free from pesticide residues, toxins 

and pathogens. 

 

2. Postharvest Diseases 

 

Losses due to pests and diseases on F&V in field and during storage, transit, and 

commercialization steps, before reaching the consumer, are not easily assessed, but can 

result in 25% of the total production in industrialized countries. In developing countries 

damages are often higher, exceeding 50%, because of the lack of adequate storage 

structures.  

 

Infection by fungi and bacteria may occur during the growing season, at harvest time, 

during handling, storage, transport and marketing, or even after purchase by the 

consumer. Disease development may be divided into two stages: infection, followed by 

the manifestation of symptoms.  

 

The high water content of plant products, such as F&V, is one of the features that makes 

them more susceptible to pathogen attack, since they are in orchard. Another factor 

favorable to pathogenic fungi, particularly to the necrotrophic ones, is the presence 

during storage on the plant organs of wounds, often produced during harvest and 

transport of fruit, which represent an ideal way of access for microorganisms. Entry via 

wounds or natural openings (such as stomata, lenticels or hydathodes) is typical of 

many bacteria and fungi. Certain species of fungi, however, are capable of direct 

penetration of the intact cuticle, the waxy outermost layer possessed by leaves, stems 

and fruits. Breach of this barrier is often facilitated by a special procedure following 

germination of the mould spore on the plant surface; the fungus produces a swelling 

(appressorium) from the underside of which a thin strand grows through the cuticle and 

into or between the plant cells. Penetration is achieved by mechanical pressure and, 

more importantly, by an array of enzymes specific to the fungus involved. The plant 

tissue has several lines of defense. If physical injury has been sustained, an active 

process of wound-healing may ensue, during which corky cells are formed as a means 
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of protection. If a fungus or bacterium gains entry, its growth may be inhibited by plant 

substances which are either present or else produced in response to injury or infection. 

The water content or the pH of the plant cells may be too high or low to permit 

infection, but some of these factors change with time and, if the microorganism remains 

viable, then invasion or complete colonization may eventually take place.  

 

The ecology and the etiology of the targeted pathogen must be understood in developing 

a control strategy. Pathogens that tolerate environmental stress often have few 

competitors, since few species can exist under such conditions. For example, the 

opportunistic pathogen Botrytis cinerea may be a poor competitor in comparison to 

Penicillium spp., which often produces secondary metabolites that inhibit competitors. 

Stress-tolerant and competitive species would therefore require control strategies 

different from those of species which depend upon physical adaptations to limited 

environmental resources or carrying-capacity environment, and are more stable and 

permanent members of the community. 

 

Many fruits are resistant to fungal attack when unripe; the infection process is halted 

almost as soon as it has begun, but the fungus remains alive, entering a quiescent or 

latent phase. Latent contamination involves fungal spores on the surface which fail to 

germinate until the host reaches maturity or senescence. Quiescent infections, however, 

are macroscopically visible although mycelial development is arrested after infection 

and resumes only as host reaches maturity and/or senescence. Some postharvest rots 

result from preharvest latent infections, especially in tropical and subtropical regions 

where environmental conditions in the field are particularly conducive to fruit infection. 

Controlling rots resulting from preharvest latent infections with postharvest treatments 

is difficult. Nevertheless, successful control of latent infections by postharvest 

applications has been reported. 

 

3. Postharvest Disease Management 

 

Any postharvest decay management program needs to begin with preharvest practices 

that promote a healthy crop, reduce conducive environments for pathogen infection and 

disease development, and minimize the amount of the pathogen that may infect or 

contaminate the crop before harvest.  

 

Preharvest practices such as the use of resistant cultivars, irrigation practices that 

minimize wetness duration, balanced nitrogen fertilization, canopy management 

(pruning), insect and weed control, and the use of fungicides may reduce the amount of 

fruit decay before and after harvest and reduce inoculum levels of the target pathogens.  

 

Similarly to preharvest disease management in the field, postharvest decay control 

practices should also be considered as part of an integrated pest management (IPM) 

strategy to control pathogens. Postharvest handling practices should focus on 

maintaining a healthy physiology of the produce and on minimizing losses from decay. 

F&V with an active metabolism show considerable resistance to microbial infection and 

decay, whereas stressed or senescent F&V are prone to disease. In addition, activity of 

decay microorganisms depends on the presence of conducive environmental conditions. 

Any environment that slows microbial activity and maintains fruit quality will reduce 
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the amount of decay. Physical methods that maintain the vitality of the crop include 

temperature management and modification of the atmospheres using reduced oxygen 

and elevated carbon dioxide. 

 

Synthetic fungicides, when admitted, are the primary means to control postharvest 

diseases. Properly applied treatments prevent or impede the development of pathogens 

and are generally economical. However, several reasons, such as the growing public 

concern over the human health conditions and the environmental pollution associated 

with pesticide usage in orchards, the development of fungicide resistant strains of 

postharvest pathogens, and the lack of reregistration of some of the most effective 

fungicides have encouraged the search of alternative approaches. 

 

4. Biological Control 

 

Biological control (BC) is the use of microorganisms to reduce the effects of noxious 

organisms, such as pathogens, and favor beneficial organisms, such as crops, or crop 

products. BC well fits with the concept of sustainable agriculture, because it mostly 

exploits natural cycles with zero or reduced environmental impact. Among the 

biological strategies adoptable in postharvest, the induction of resistance in the fruit, the 

use of plant or animal products with a fungicidal activity, and, above all, the application 

of antagonistic microorganisms can be considered. BC using antagonists has emerged as 

one of the most promising alternatives, either alone or as part of an integrated pest 

management to reduce pesticide use. 

 

Since the 1990s, several biocontrol agents (BCAs) have been exploited and widely 

investigated against different postharvest fungal pathogens (Alternaria, Botrytis, 

Colletotrichum, Monilinia, Penicillium, Rhizopus spp.) on different host species. Most 

of the research has been conducted in Europe (mainly Belgium, Italy, Spain and 

Sweden), the United States, Israel, South Africa and China. The expansion of this 

research began with the publication of the report by Pusey and Wilson in 1984 on the 

successful control of brown rot of peach caused by Monilinia fructicola after harvest by 

using a strain of Bacillus subtilis isolated from soil. Postharvest application attempts 

were made because the field application of this bacterium to peach trees from bloom to 

harvest failed to control this disease. Results from pilot tests on the control of brown rot 

of peach, conducted in commercial packinghouses, were encouraging but this antagonist 

was never commercialized because it was a producer of antibiotics. The consideration 

that the application of such bacterial antagonists on the fruit was not commercially 

acceptable, brought to switch the interest on antagonists using modes of action different 

from antibiosis. 

 

Wilson and Wisniewski in 1994 indicated the characteristics of an ideal antagonist: 

genetic stability, efficacy at low concentrations and against a wide range of pathogens 

on various fruit products, simple nutritional requests, survival in adverse environmental 

conditions, growth on cheap substrates in fermenters, lack of pathogenicity for the host 

plant and lack of production of metabolites potentially toxic for humans, resistance to 

the most frequently used pesticides, compatibility with other chemical and physical 

treatments (Table 1).  
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Genetically stable 

Effective at low concentrations 

Effective against a wide range of pathogen species 

Effective on various host species 

Simple in its nutritional requirements 

Able to grow in cheap substrates 

Able to be formulated with a long shelf life 

Easy to be applied and distributed 

Resistant to pesticides used in field and during storage 

Compatible with other chemical and physical treatments 

Compatible with commercial processing procedures 

Able to survive in adverse environmental conditions 

Not pathogenic for the host plant 

Not toxic for humans 

Not able to grow at 37°C 

 

Table 1. Main characteristics of an ideal antagonistic microorganism for the control of 

postharvest pathogens of fruits and vegetables 

 

The discovery of bacterial and yeast antagonists effective against various postharvest 

diseases of pome fruits among the resident microflora of apple and pear provided a new 

source of antagonists. The next milestone was the registration by the United States 

Environmental Protection Agency (EPA) and commercialization of the first two BCAs 

in 1995: a yeast, Candida oleophila, and a saprophytic strain of Pseudomonas syringae.  

 

5. The Postharvest Environment 

 

The postharvest environment represents a particular sector for the development of BC. 

Wounds made during harvesting and fruit handling can be protected from wound 

invading pathogens with a single postharvest application of the antagonist directly to 

wounds, using existing delivery systems (drenches, sprayers, dips). Once harvested, 

fruits are placed in cold storage for various periods of time ranging from a few days to 

months, depending on the commodity.  

 

The short period between harvesting and placing fruit in storage, from less than a day to 

a few days, requires rapid antagonist action. Once fruit is placed in cold storage, 

metabolic rates of the host and associated microflora will decline depending on the 

temperature regime selected. The search for antagonists to control postharvest wound 

invading pathogens should be narrowed to rapid colonizers of the wound site that can 

still be metabolically active at low storage temperatures. 

 

Peculiar difficulties are present in the control of postharvest diseases: the disease control 

level required is extremely high (also 95-98%); the nutritional safety imposes special 

care to the direct use of living microorganisms on food products; the potential market to 

employ a biofungicide expressly developed for postharvest use is relatively small. 
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On the other side, the possibilities of success for postharvest biological means can be 

numerous. The storage conditions partially controlled, such as temperature and 

humidity, can switch the host-pathogen-antagonist equilibrium towards the antagonist 

and the laboratory trials and results have a higher possibility to be transferred into 

practice. Furthermore, biotic interference is minimal so antagonists encounter minimal 

competition from indigenous microorganisms. Consequently, BC of postharvest 

diseases tends to be more consistent than BC under field conditions, and the occasional 

variation in performance usually can be traced to nonstandard procedures or conditions. 

The application site of the antagonist, which is the fruit, is limited, permitting an 

increase of the BCA efficacy and avoiding the presence of some interfering factors. 

Finally, the high value of fruit can justify a treatment with a product relatively 

expensive, whereas under field conditions this usage might not be cost effective. 

 

6. Isolation of Antagonists 

 

The first step in developing BCAs is the isolation and screening process which will 

largely influence its efficacy and ultimately its success under commercial conditions. 

The isolation procedure of potential antagonists depends on the characteristics of the 

pathogen infection. 

 

To control postharvest diseases, investigators usually isolated naturally occurring 

microorganisms from F&V just before harvesting or during storage. The fruit surface is 

an excellent source of naturally occurring antagonists against postharvest fruit decay. 

Searching for antagonists on healthy fruits in the orchard and storage, resulted in the 

isolation of many ecologically fit bacterial and yeast antagonists effective against 

postharvest decays.  

 

Isolation of the antagonists can be improved by using fruit from unmanaged or organic 

orchards, where natural populations have not been disturbed by chemical usage, and the 

pool of potential antagonists is greater than in a chemically managed conventional 

orchard. A variety of enrichment procedures have been used that favor isolation of 

microorganisms growing efficiently on the substrate, which occurs at the infection site 

(wound) that must be protected. An elegant and fast method of antagonist isolation was 

adopted by Wilson and colleagues in 1993. They applied rinsing waters from tomatoes 

and apples directly on wounds inoculated with the pathogen (Botrytis cinerea) and 

isolated antagonists from wounds which did not exhibit any symptom. This strategy 

allows for the rapid selection of a number of potential antagonists for the control of 

postharvest diseases of fruit with a minimal expenditure of time and expense and has 

been used in many postharvest BC programs throughout the world.  

 

A shortcoming of this strategy is that it favors the selection of antagonists that are 

generally fast growers with the ability to colonize a specific niche rich in nutrients, that 

mainly exhibit protective rather than curative activity, and appear to have little effect on 

latent infections. Present screening methods also favor the selection of organisms whose 

primary mechanism of action is nutrient competition. A direct consequence of the type 

of screening procedures currently in use is the observation that several research 

programs in postharvest BC worldwide have independently identified and selected 

antagonists from a narrow range of species (Table 2 and Table 3). 
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Yeast or fungal species Pathogens controlled Host species 

Acremonium breve Botrytis cinerea apple 

Aureobasidium pullulans B. cinerea, Monilinia fructicola, 

Monilinia laxa, Penicillium expansum, 

Rhizopus stolonifer 

apple, grapes, peach, 

strawberry, sweet cherry 

Candida ciferrii P. expansum apple 

Candida ernobii Diplodia natalensis citrus 

Candida membranifaciens Colletotrichum gloeosporioides mango 

Candida oleophila B. cinerea, C. gloeosporioides, 

Colletotrichum musae,Penicillium 

digitatum, P. expansum, Penicillium 

italicum, R. stolonifer 

apple, banana, cherry, citrus, 

papaya, peach, pear, 

strawberry, tomato 

Candida saitoana B. cinerea, P. digitatum, P. expansum apple, citrus 

Candida sake B. cinerea, P. digitatum, P. expansum, 

Rhizopusnigricans 

apple, citrus, kiwifruit, pear  

Cryptococcus albidus B. cinerea, Mucor piriformis, P. 

expansum 

apple, pear 

Cryptococcus flavus M. piriformis pear 

Cryptococcus humiculus B. cinerea apple 

Cryptococcus 

infirmominiatus 

(Cystofilobasidium 

infirmominiatum) 

B. cinerea, M. fructicola,P. expansum,  apple, cherry, pear 

Cryptococcuslaurentii Alternaria alternata, B. cinerea, 

Geotrichumcitri-aurantii, 

Glomerellacingulata, M. fructicola, M. 

piriformis,P. expansum, R. stolonifer 

apple, cherry, citrus, jujube, 

peach, pear, strawberry, 

tomato 

Cryptococcus magnus M. fructicola peach 

Debaryomyces hansenii Geotrichum candidum, P. digitatum, P. 

italicum, R. stolonifer 

citrus, peach 

Filobasidium floriforme B. cinerea apple 

Hanseniaspora uvarum B. cinerea grapes 

Kloeckera apiculata B. cinerea, P. digitatum, P. italicum cherry, citrus 

Leucosporidium scotti P. expansum apple 

Metschnikowia andauensis B. cinerea, P. digitatum, P. expansum, 

P. italicum, R. stolonifer 

apple, mandarin, orange, pear 

Metschnikowia fructicola B. cinerea, P. digitatum, P. expansum, 

R. stolonifer 

carrot, cherry, citrus, grapes, 

strawberry, sweet potato 

Metschnikowia gruessii B. cinerea strawberry 

Metschnikowia pulcherrima Alternaria sp., B. cinerea, 

Colletotrichum acutatum, Monilia sp., 

P. expansum 

apple, cherry tomato, 

grapefruit, kiwifruit, peach,  

strawberry, table grapes 

Muscodor albus B. cinerea, C. acutatum, Colletotrichum 

coccodes, Fusarium sambucinum, G. 

candidum, Helminthosporium solani, M. 

fructicola, Pectobacterium 

atrosepticum, P. expansum, Rhizopus 

spp. 

apple, peach, potato 

Oxyporus latemarginatus B. cinerea apple 

Pichia anomala B. cinerea, P. digitatum, P. expansum, 

P. italicum 

apple, citrus 

Pichia angusta B. cinerea, M. fructicola apple 

Pichia guilliermondii A.alternata, B. cinerea, Colletotrichum 

capsici,M. fructicola, P. digitatum, P. 

expansum, P. italicum, R. nigricans, R. 

stolonifer 

apple, chilly, citrus, 

grapefruit, grapes, nectarine, 

peach, strawberry, tomato  
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Pichia membranaefaciens C. acutatum, M. fructicola, P. 

expansum, Rhizopus sp. 

cherry, loquat, nectarine, 

peach 

Pseudozyma fusiformata M. laxa peach 

Rhodosporidiumpaludigenum A. alternata,B. cinerea, 

Geotrichumcitri-aurantii 

citrus, jujube, tomato 

Rhodotorula glutinis A. alternata, B. cinerea, M. fructicola, 

P. expansum, R. stolonifer 

apple, cherry, jujube, peach, 

pear, strawberry 

Rhodotorula mucilaginosa B. cinerea, P. expansum apple 

Sporidiobolus pararoseus M. fructicola peach 

Sporobolomyces roseus B. cinerea apple 

Trichoderma harzianum B. cinerea, C. gloeosporioides, C. 

musae, Gliocephalotrichum 

microchlamydosporum, Lasidiodiplodia 

theobromae 

banana, grapes, kiwifruit, 

pear, rambutan, strawberry 

Trichoderma viride B. cinerea, L. theobromae, P. digitatum citrus, mango, strawberry 

Trichosporon pullulans A. alternata, B. cinerea cherry  

 

Table 2. Main yeast or fungal species with antagonistic properties against postharvest 

pathogens of fruits and vegetables studied since the end of the 1980s 

 

Bacterial species Pathogens controlled Host species 

Bacillus 

amyloliquefaciens 

Botrytis cinerea, Colletotrichum 

gloeosporioides, Colletotrichum musae, 

Geotrichum candidum, Lasidiodiplodia 

theobromae, Penicilllium digitatum, 

Penicillium expansum, Penicillium italicum, 

Phomopsis sp., Rhizopus stolonifer 

banana, citrus, papaya, 

peach 

Bacillus subtilis Alternaria alternata, Alternaria citri, 

Botryosphaeria berengeriana, B. cinerea, 

Cercospora purpurea, Colletotrichum 

gloeosporioides, C. musae, G. candidum,  L. 

theobromae, Monilinia fructicola, Monilinia 

laxa, P. digitatum, P.expansum, P. italicum, 

Phomopsis citri, Pseudocercospora musae 

Apple, apricot, avocado, 

banana, cherry, citrus, litchi, 

nectarine, peach, pear, plum, 

strawberry 

Bacillus licheniformis C. gloeosporioides, Dothiorella gregaria mango 

Bacillus pumilus B. cinerea pear 

Burkholderia cepacia Colletotrichum musae banana 

Burkholderia gladioli P. digitatum, P. expansum apple, citrus (lemon, orange) 

Burkholderia glathei P. digitatum citrus 

Brevundimunas 

diminuta 

C. gloeosporioides mango 

Enterobacter aerogenes A. alternata cherry 

Enterobactercloacae R. stolonifer peach 

Pantoeaagglomerans P. digitatum, P. expansum, P. italicum, R. 

stolonifer 

apple, citrus, pear 

Pseudomonasaeruginosa Erwinia carotovora cabbage 

Pseudomonascepacia B. cinerea, M. fructicola, Mucor piriformis, P. 

digitatum,  P. expansum 

apple, nectarine, orange, 

peach, pear 

Pseudomonas corrugata M. fructicola nectarine, peach 

Pseudomonas 

fluorescens 

B. cinerea apple 

Pseudomonas putida E. carotovora potato 

Pseudomonas syringae B. cinerea, G. candidum, M. fructicola, M. 

piriformis, P. digitatum, P. expansum, P. 

italicum 

apple, cherry, citrus, peach, 

pear, potato, sweet potato 
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Rahnella aquatilis B. cinerea, P. expansum apple 

Stenotrophomonas 

maltophilia 

C. gloeosporioides mango 

 

Table 3: Main bacterial species with antagonistic properties against postharvest 

pathogens of fruits and vegetables studied since the end of the 1980s 

 

Other enrichment procedures include isolation from natural cracks on the fruit surface; 

agar plates containing apple juice that were seeded with fruit washings; fruit wounds 

treated with fruit washings and incubated for several days; freshly made wounds on 

apples in the orchard that were exposed to colonization by fruit-associated microbiota 

from one to four weeks before harvest; and from an apple juice culture resulting from 

seeding diluted apple juice with the orchard-colonized wounds and repeated 

reinoculation to fresh apple juice. 

 

The fructoplane has provided the most abundant and most desirable source for isolating 

antagonists against postharvest fruit pathogens. However, the antagonists may also 

come from other closely related or unrelated sources. The phylloplane has also been a 

good source of antagonists, as it may share part of the resident microflora of fruits as 

well as contain other microorganisms dislodged from the fruit. Screening collections of 

yeast or starter cultures used in the food industry may also yield effective antagonists. 

Soil also maybe an abundant and diverse source of antagonists. 

 

Since the method of screening will have a major impact on the type and properties of 

the antagonist that are identified, it is important to evaluate the consequence of the 

methods for screening that are presently being utilized and appraise whether or not they 

can be improved.  

- 

- 

- 
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