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Summary 
 
Cells use signaling and regulatory pathways connecting numerous constituents such as 
DNA, RNA, proteins and small molecules to coordinate multiple functions, allowing 
them to adapt to changing environments. High-throughput experimental methods enable 
the measurement of expression levels for thousands of genes and the determination of 
thousands of protein-protein or protein-DNA interactions. This abundance of 
information serves as a fertile ground for the application of network theory, and it is 
increasingly recognized that theoretical methods such as network inference, graph 
analysis and dynamic modeling are needed to make sense of the data. This chapter 
reviews three topics of special relevance for molecular and cellular interaction 
networks: graph inference (i.e. reconstructing the network of interactions among a set of 
biological entities), graph analysis (i.e. mining the information content of the network), 
and dynamic network modeling (i.e. connecting the interaction network to the dynamic 
behavior of the system).  
 
1. Introduction 
 
In order to understand the function of a cell or of higher units of biological organization, 
often it is beneficial to conceptualize them as systems of interacting elements. For such 
a systems-level description (which represents the main goal of systems biology), one 
needs to know (i) the identity of the components that constitute the biological system; 
(ii) the dynamic behavior of these components, i.e. how their abundance or activity 
changes over time in various conditions and (iii) the interactions among these 
components. Ultimately, this information can be combined into a biological network 
model that is not only consistent with current knowledge, but provides new insights and 
predictions such as the behavior of the system in conditions that were previously 
unexplored. 
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In some cases, the organization of the network of interactions underlying a biological 
system is straightforward (e.g. a linear chain of interactions), while in other cases a 
more formal representation, offered by graph theory, is required. The simplest possible 
graph representation reduces the system’s elements to graph nodes (also called vertices) 
and reduces their pairwise relationships to edges (also called links) connecting pairs of 
nodes (see Figure 1). The nodes of (sub)cellular systems may be genes or mRNA-, 
protein- or other molecules. Directed edges (also called arcs) have a specified source 
(starting) node and target (end) node, and are most suited to represent chemical 
transformations and regulatory relationships. Non-directed edges are most appropriate 
for mutual interactions such as protein-protein binding or for relationships whose source 
and target are not yet distinguishable. Depending on the availability of information, 
edges are characterized by signs (positive for activation, negative for inhibition) or 
weights quantifying confidence levels, strengths, or reaction speeds. As the abundance 
of cellular constituents spans a large range and varies in time, nodes also need to be 
characterized by quantitative information describing the concentration of the 
corresponding molecules or the copy number of the corresponding mRNAs; this 
information is usually denoted as node state (or status). 
 
This paper focuses on three topics related to molecular networks: graph inference, graph 
analysis, and dynamic network modeling. Graph inference refers to the problem in 
which the information on the identity and the state of a system’s elements is used to 
infer interactions or functional relationships among these elements and to construct the 
interaction graph underlying the system. Graph analysis means the use of graph theory 
to analyze a known (complete or incomplete) interaction graph, and to extract new 
biological insights and predictions from the results. Dynamic network modeling aims to 
describe how known interactions among defined elements determine the time-course of 
the state of the elements, and of the whole system, under different conditions. A 
dynamic model that correctly captures experimentally observed normal behavior allows 
researchers to track the changes in the system’s behavior due to perturbations. These 
three lines of inquiry are often combined in the literature since they provide three facets 
of the same objective: to understand, predict, and if possible control (tune toward a 
desired feature) the dynamic behavior of biological interacting systems. 
 
2. Inference of Interaction Networks from Expression Information 
 
The most prevalent use of graph inference is using gene/protein expression information 
to predict network structure, i.e. to predict which gene/protein influences which other 
genes/proteins through transcriptional or (post)translational regulation. A predicted 
regulatory relationship among two genes can be verified by experimental testing of the 
interactions and regulatory relationships among the two genes/proteins. 
 
Genes with statistically similar (highly correlated) expression profiles in time or across 
several experimental conditions can be grouped using clustering algorithms. These 
methods give insight into groups of genes that respond in a similar manner to varying 
conditions, and that might therefore be co-regulated , however, that two nodes belong to 
the same group does not imply a causal relationship among them. The ability to extract 
meaning from clustering depends on the user’s prior biological understanding of the 
objects that are organized. Most applications derive biological insight through “guilt by 
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association”, that is, they predict the function of unknown gene products by their 
association with recognized clusters.  
 
Data analysis methods such as principal component analysis aim to highlight the global 
patterns in the expression of a large number of genes/proteins by condensing the 
multivariate data into just two or three composite variables that capture the maximal co-
variation between all the individual patterns. This method was used to link the level of 
19 proteins involved in apoptotic signaling in human colon adenocarcinoma cells to four 
quantitative measures of apoptosis, leading to the prediction of cell-death responses to 
molecular perturbations and of the roles of key signaling intermediaries. 
 
Bayesian methods aim to find a directed, acyclic (i.e. with no feedback loop) graph 
describing the causal dependency relationships among components of a system, and a 
set of local joint probability distributions that statistically convey these relationships. 
The starting edges are established heuristically based on an initial assessment of the 
experimental data, and are refined by an iterative search-and-score algorithm until the 
causal network and posterior probability distribution best describing the observed state 
of each node are found. Bayesian inference was recently used to infer the signaling 
network responsible for embryonic stem cell fate responses to external cues based on 
measurements of 28 signaling protein phosphorylation states across 16 different 
factorial combinations of stimuli. The inferred network predicted novel influences 
between ERK phosphorylation and differentiation as well as between RAF 
phosphorylation and differentiated cell proliferation.  
 
Model-based methods of regulatory network inference from time-course expression data 
seek to relate the rate of change in the expression level of a given gene with the levels of 
other genes. Continuous methods postulate a system of differential equations, while 
discrete methods assume a logical (Boolean) relationship. Experimental data on gene 
expression levels is substituted into the relational equations, and the ensuing system of 
equations is then solved for the regulatory relationships between two or more 
components (see Figure 1). Because often there are far more biochemical components in 
the network than there are experimental time points, multiple networks will be possible 
solutions; these are filtered by making plausible assumptions on the objectives of the 
underlying system such as economy of regulation (reflected by having the fewest edges 
that satisfy the conditions) or maximal biomass production flux.  

Several types of experimental results are best interpreted as indirect causal evidence that 
indicates the involvement of a protein or molecule in a certain process or pathway. 
Differential responses to a stimulus in wild-type organisms versus an organism where 
the respective protein’s expression or activity is disrupted is an example of such indirect 
causal evidence connecting the stimulus, protein and response. These observations can 
be represented by two intersecting paths (successions of adjacent edges, see below) in 
the underlying interaction network: one connecting stimulus to response and the other 
connecting the protein to response. Graph-based inference algorithms integrate indirect 
causal relationships and direct interactions to find the most parsimonious network 
consistent with all available experimental observations. This method was used to 
reconstruct the signal transduction network corresponding to stomatal closure in plants 
in response to the stress hormone abscisic acid, and is implemented in the software 
NET-SYNTHESIS.  
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