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Summary 
 
This chapter conceives the history of neural networks emerging from two millennia of 
attempts to rationalize and formalize the operation of mind. It begins with a brief review 
of early classical conceptions of the soul, seating the mind in the heart; then discusses 
the subsequent Cartesian split of mind and body, before moving to analyze in more 
depth the twentieth century hegemony identifying mind with brain; the identity that 
gave birth to the formal abstractions of brain and intelligence we know as ‘neural 
networks’. 
 
The chapter concludes by analyzing this identity - of intelligence and mind with mere 
abstractions of neural behavior - by reviewing various philosophical critiques of formal 
connectionist explanations of ‘human understanding’, ‘mathematical insight’ and 
‘consciousness’; critiques which, if correct, in an echo of Aristotelian insight, suggest 
that cognition may be more profitably understood not just as a result of [mere 
abstractions of] neural firings, but as a consequence of real, embodied neural behavior, 
emerging in a brain, seated in a body, embedded in a culture and rooted in our world; 
the so called 4Es approach to cognitive science: the Embodied, Embedded, Enactive, 
and Ecological conceptions of mind. 
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1. Introduction: The Body and the Brain 
 
What force directs these actions? Where lies the body-magic that brings forth my 
world? Where sits this mind? If science can fully respond to these questions then it 
might be possible one day to simulate the human ability to act mindfully, with 
intelligence, on computer. 
 
For much of the twentieth century the dominant paradigm of intelligence seated the 
mind in the brain; thus, if computers can model the brain then, theory goes, it ought to 
be possible to program computers to act intelligently. In the latter part of the twentieth 
century this insight - that intelligence is grounded in the brain - fuelled an explosion of 
interest in computational “neural networks” : high fidelity accurate simulations of the 
brain (cf. ‘computational neuroscience’) or engineering approximations used to control 
intelligent machines (connectionism). However, the view that intelligence is rooted 
solely in the brain is a relatively modern one and one that, in recent years, is being 
challenged by embodied approaches to artificial intelligence; a perspective that, in turn, 
can be traced back to the classical era. 
 
The classical view of the mind was encompassed by the earlier notion of soul, leading 
Aristotle (in the De Motu Animalium, 350 B.C.E.) to famously enquire “how the soul 
moves the body, and what is the origin of movement in a living creature”. In stark 
contrast to modern notions identifying mind with brain, Aristotle posited “the heart is 
the seat of the senses” - the sensorium - and the controller of both voluntary and 
involuntary movement; unlike, say, Alcmaeon and Hippocrates, in Aristotle’s 
metaphysics of movement and tripartite division of the soul (into the appetitive, 
sensitive and rational parts; localized respectively in the liver, heart, and brain) there 
was simply no place for the brain in the casual chain that ultimately gave rise to animal 
behavior. 
 
Such classical ideas had influence well into the renaissance period until, in 1649, 
Descartes laid the foundations of a new - dualist - division of body (res extensa) and the 
immaterial soul/mind (res cogitans); the mind interacting with the material brain [the 
organ which controlled the body] - at an interface famously located in the pineal gland. 
Around this time support for this view of the brain - as the organ that controlled 
behavior - found empirical support in the work of a contemporary of Descartes, the 
English physician Thomas Willis, who in 1667 began to identify links between the 
physical structure of the brain and certain pathological behaviors (e.g. epilepsy and 
other convulsive diseases). 
 
Emerging from what later became known as the British Empiricist school of 
philosophy, John Locke was perhaps the first philosopher to define the self through a 
‘continuity of consciousness’:that conscious thinking thing, (whatever substance, made 
up of whether spiritual, or material, simple, or compounded, it matters not) which is 
sensible, or conscious of pleasure and pain, capable of happiness or misery, and so is 
concerned for itself, as far as that consciousness extends.  
 
In addition, in his 1690 ‘essay concerning human understanding’ Locke famously 
suggested that at birth the mind was to be considered a blank slate (‘tabula rasa’):  
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Let us then suppose the mind to be, as we say, white paper, void of all character, 
without any ideas. How comes it to be furnished? I answer, in one word, from 
experience.  

 
Thus, contrary to prevailing Cartesian philosophy (which held the basic logical 
propositions are innate), Locke maintained that we are born without innate ideas, and 
that all ‘knowledge’ comes from ‘experience’; that knowledge is causally dependent on 
experience and that knowledge is justified solely by experience. Subsequently building 
on these intuitions in a supplementary chapter of the fourth edition of his essay, in 1690 
Locke introduced the notion of an ‘Association of Ideas’ to label the principle 
accounting for the mental peculiarities of individuals. (In the philosophy of mind a 
‘theory of mind’ typically attempts to explain the nature of ideas, concepts and other 
mental content in terms of the ‘cognitive states’ of underlying ‘cognitive processes’. A 
cognitive state can thus encompass knowledge, understanding, beliefs etc. In a 
‘representational theory of mind’ the cognitive states are conceived in terms of relations 
to ‘mental representations’ (which have content). In this view the underlying cognitive 
processes are simply understood in terms of ‘mental operations’ on the mental 
representations.). In Locke’s ‘associationist theory of mind’ this association of ideas - 
or associationism as it later became known - suggested that the mind is organized, at 
least in part, by principles of association and that items that ‘go together’ in experience 
will ‘go together’ in thought; subsequently David Hume refined Locke’s generic notion 
of ‘going together by association’ by reducing it to three core empirical principles: 
identity, contiguity in time and place, cause and/or effect.). 
 
The associated ideas (‘representations’) could be memories, ideas, images, thoughts 
etc., with complex ideas being constructed from ‘simples’ and simple ideas being 
derived from sensations. Such raw sensations/perceptions were not governed and 
defined by principles of association, but were externally caused by things ‘outside the 
head’, which for Hobbes, Hume and Locke meant objects of the world. Hence for some 
time associationism was closely linked with the broad British Empiricist movement in 
philosophy. 
 
Building on earlier ideas from Galileo and Descartes, Locke’s epistemology famously 
identified objects [of reality] by their primary and secondary qualities. Examples of 
primary qualities include: solidity; extension; figure; number; motion; rest etc. Clearly 
the primary qualities have a direct link to their bearer; a primary quality says something 
about its bearer. E.g. If an object instantiates the primary quality of rest, then the object 
[of which it is a property] must be at rest. In this manner Locke suggested such primary 
qualities are essential to their bearers and are intrinsic qualities of their bearer and hence 
are fundamentally independent of the perceiving mind. 
 
Conversely, Locke hypothesized the ‘secondary qualities’ to be the properties [of 
objects] that produce sensations in observers; things such as color, sound, taste, smell 
etc. In this conception secondary qualities are the powers of objects - by configurations 
of their primary qualities - to cause experience in subjects; the effect objects have on 
some people. For Locke primary qualities exist in the world but secondary qualities 
exist only in the mind of the perceiver; there is no blueness or sweetness in the world, 
only extension in motion. 
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Thus Locke’s associationism entails (i) compounding processes, where complex items 
are formed from simple items; (ii) decompositional processes, where complex items are 
broken down into their simple elements and (iii) sequencing processes, where 
associations follow one another (e.g. in time). In sequencing processes groups of items 
(e.g. memories) follow one another in one of two ways: (a) by intrinsic association, 
whereby some items have a natural connection (i.e. a connection independent of the 
observer) with each other. E.g. chili pepper and ‘hotness’ and (b) by extrinsic 
association, whereby some items have an observer dependent connection (either 
voluntarily or by happen chance). E.g. If the first person one fell madly in love with had 
long red hair, then one might thereafter associate these qualities with beauty, sex and 
love. 
 
In his essay Locke suggested that such extrinsic associations had three properties: (i) 
they are either voluntary or happen by chance; (ii) the strength of the ‘impression’ of 
ideas can reinforce the association (i.e. powerful ideas may be forever linked in the 
mind. cf. perception of beauty) and (iii) some items will ‘go together’ more easily than 
others; thus some will find mathematical associations easy, some artistic etc. Thus, 
although at birth the mind is a blank slate empty of ideas, individuals may find some 
‘ideas’ easier to associate than others. These ‘ideas’ are conceived as mental 
representations; in this way we entertain particular ideas when in particular mental 
states. Thus the Scottish philosopher, historian and economist David Hume famously 
suggested that mental processes are merely sequences of such associated mental ideas. 
But what are such mental ‘ideas’ actually ‘about’? 
 
To what do ‘ideas’ actually refer? This, of course, is the problem of intentionality: ‘how 
do mental ideas connect with [become to be about] things in the world?’ Hume’s 
response was to suggest that mental ideas are fundamentally representations ‘like 
images’; thus positing a pictorial resemblance between idea and world. Unfortunately 
Hume’s pictorial mechanism is not without problems. Firstly, it is both too general (not 
all ideas are like pictures; cf. justice) and not general enough (consider a picture of 
Eiffel Tower; this image may look like the Eiffel Tower, from one perspective, but that 
image is not necessary to the notion of the Eiffel Tower; the tower that Gustave Eiffel 
built); secondly, it provides no account of mental reference (resemblance is not 
sufficient for representation; a cartoon may look more like its creator than its subject, 
but can still represent the subject); thirdly, it offers no account of truth and falsity. 
Contra Tractatus Wittgenstein [2.17] “What the picture must have in common with 
reality in order to be able to represent it after its manner - rightly or wrongly - is its form 
of representation”, images are not propositions; images [in themselves] are neither true 
or false. 
 
Furthermore, although Hume’s associationism - where mental/cognitive processes are 
simply defined as associations between representations - can easily accommodate [folk] 
psychological explanations of mind, it fundamentally lacks a workable account of 
representational content. i.e. what is it about a ‘representation of a dog’ that constitutes 
it as representing a dog rather than a banana (or anything else), rather than not being 
representational at all? Even in the present era [according to the American philosopher 
Mark Bickhard] the problem of “accounting for representational content is the central 
issue in contemporary naturalism: it is the major remaining task facing a naturalistic 
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conception of the world. Representational content is also the central barrier to 
contemporary cognitive science and artificial intelligence: it is neither possible to 
understand representation in animals nor to construct machines with genuine 
representation given current (lack of) understanding of what representation is” 
(Bickhard, 1993). 
 
The preliminary theoretical base for a neural conception of mind (and hence also for 
contemporary neural networks) was independently proposed by Alexander Bain (1873) 
and William James (1891). Central to their work is the notion that both thoughts and 
body activity resulted from neuronal processes in the brain; for Bain every possible 
activity required the firing of a distinct set of neurons. At the time the scientific 
community was skeptical of Bain’s ideas because they appeared to require an inordinate 
number of neural connections within the brain (albeit it is increasingly apparent that the 
brain is an exceedingly complex organ and that the same brain ‘hardware’ can process 
multiple problems and multiple inputs - see Section 10.4.3).  
 
In some ways James’s theory was similar to Bain’s, however in James’s model he 
suggested that memories and actions resulted from electrical currents flowing between 
neurons; this was perceived as a significant advantage as, by focusing on the flow of 
electrical currents between neurons, it did not require as many distinct neural groups to 
store memories or motivate action. 
 
1.1. William James and Neural Associationism 
 
In “Minds, Brains, Computers” Harnish centrally views William James “The Principles 
of Psychology” (James,1891) as suggesting that thinking (indeed all aspects of 
conscious life) had the following key properties:  
• Thinking is conscious.  
• Thinking is open to introspective examination.  
• Thinking is private; ‘my thought belongs with my other thoughts and your thought 

belongs with your other thoughts’.  
• Thinking ‘flows like a stream’: a metaphor that gives rise to the idea of the ‘stream of 

consciousness’; a concept with significant resonance in twentieth century literature, 
most famously in the works of Virginia Woolf and James Joyce.  

• Thinking is ‘about something’ (i.e. it is fundamentally “intentional”).  
• Thinking is an evolved function (i.e. it is not a ‘gift from god’).  
 
For James the key question in psychology is ‘how does the mind solve the problem of 
what to think next?’ The answer James arrived at was that thinking fundamentally 
operates using two general ‘principles of association’ which James sought to explain on 
a quasi-neurological basis:  
• Principle 1:When two elementary brain processes have been active together or in 

immediate succession, one of them, on reoccurring, tends to propagate its 
excitement into the other; a mechanism remarkably similar to the learning scheme 
outlined in 1949 by the Canadian psychologist Donald Hebb (1949) (see Section 
3.1))  

• Principle 2: The amount of activity at any given point in the brain cortex is the sum 
tendencies of all the other points that discharge into it – a similar mechanism to 
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that described in 1943 by McCulloch & Pitts (1943) in their mathematical model of 
neural firing (see Section 2.1) - such tendencies being proportionate:  
– to the number of times the excitement of each point may have accompanied the 

point in question;  
– to the intensity of the excitements;  
– to the absence of any rival point, functionally disconnected with the first, into 

which the discharges may have been diverted. 
 

Using these principles James offers the following explanation of three types of 
associative mental processes involved in spontaneous thought: unrestricted association; 
partial association and focused association.  
 
Total association: in which there is unrestricted association between previous events 
and/or arbitrary concepts. e.g. James famously describes ‘The memory of a walk 
followed by a romantic dinner’.  

 
 

Figure 1. Total Association 
 
Let A be the memory of the walk where the pattern of excitement distributed across 
neurons[ ]a, b, c, d, e . Let B be romantic thoughts where the pattern of excitement 

distributed across neurons[ ]l, m, n, o, p . To store this unrestricted total association 
James suggests the memories A  and B  must “vibrate in unison” hence ‘ A  must excite 
B ’ and ‘ B  must excite A ’, see Figure 1.  
 
Partial association in which only some of the past experiences have associated 
consequences; but ‘why are some memories linked and not others?’ James suggests that, 
“in no revival of past experience are all the items of thought equally operative in 
determining what the next thought shall be. Always some ingredient is prepotent over 
the rest.” For James the item which is prepotent is the one which is most in our interest, 
“some one brain-process is always prepotent above its concomitants in arousing 
elsewhere”.  
 
James claims partial recall is the most common form of association-based recall and 
occurs when only some of past experiences have the required ‘associated 
consequences’. To determine what experiences are [partially] associated together James 
outlines four principles; these are:  
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– Habit: the more often something done the more likely it is to be associated.  
– Recency: more recent events are more likely to be recalled.  
– Vividness: the more intense an experience the more likely it is to be recalled.  
– Emotional congruity: similar emotion backgrounds are more likely to be associated 

together; hence feeling miserable makes it more difficult to recall times of joy.  
 
At any time the strongest principle of association is that which pertains.  
 
To see how these principles of association work imagine if one is thinking A  and A  is 
associated with B , (by say habit), then one will subsequently think B  unless a stronger 
principle applies.  
 
Focalized recall / association by similar sequences: in which not all memories are 
obviously associated (‘go together’). As an example James considers: ‘How might 
thoughts of a gas flame lead to thoughts of football?’ James unfolds the process in this 
way: think of the gas-flame which conjures up visions of the moon [via a shared 
‘similarity of color’; pale-whiteness]; this, in turn, is linked to the thoughts of football 
[via ‘similarity of shape’; roundness]. So via focused recall thought can move from A  
to B  (from gas-flame to football) even though neither gas-flame nor football have any 
properties in common by themselves. 
 
Contrasting the above examples of ‘spontaneous thought’ James also offers explanation 
for voluntary thought; a subject often thought problematic for associationists. James 
addresses the issue by offering an associationist account of the process of ‘recall of a 
forgotten thing’ (and claims a similar mechanism underlies means-end analysis). 
 
To recall a forgotten item James envisages a situation where two groups of three 
memories [ ]a,b,c   and [ ]l,m,n   are fully associated (& interconnected) with the 
‘forgotten item’ Z  .  
 

 
 

Figure 2. To recall a memory 
 
By the process of total association activation of [ ]a,b,c  will eventually propagate to 

activate [ ]l,m,n  which together [ ]a,b,c, l,m,n   will serve to activate the forgotten 
memory Z , see Figure 2. 
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Means-end analysis is performed in a similar way. If [ ]a,b,c  is the goal states, its 

activation will eventually propagate to excite suggestion-states [ ]l,m,n  which together 
will excite the solution Z , albeit in his analysis Harnish points out that James never 
considers if all reasoning is performed via means end or even if his version of means-
end analysis will work in practice; for example, Harnish suggests that balancing a bank 
account would be difficult to describe in this way.). 
 
1.2. The Neuron: Fine Grain Structure of the Brain 
 
In “Aristotle’s laptop: the discovery of our informational mind”. Aleksander and 
Morton (2012) suggest research into the building blocks of the brain effectively began 
with the discovery that all living things are made of cells. Thus, 1838 the German 
botanist Matthias Schleiden first identified ‘cell like’ structures in plants; an idea later 
extended by physiologist Theodor Schwann who observed similar ‘cellular structures’ 
in the organs of animals; a discovery which, in turn, led to the development of ‘cell 
theory’: the idea that all living materials - whether in plants or animals - are composed 
of cells. In the context of the brain this posed the question: ‘are the cells of the brain just 
a way of creating a fused functional structure or is there something special that the cells 
of the brain do (at the individual cell level) which is different to the function of other 
cells?’ 
 
Central to the search to resolve this issue was the ability to stain tissue such that it 
shows up better under microscopes (e.g. see Figure 3), research pioneered by the 
Bohemian anatomist Johannes Evangelista Purkinnje. Johannes worked at the 
University of Prague where he successfully made the then thinnest known slices of 
brain tissue; to make the slices Purkinnje was amongst the first to use a device called a 
microtome; a tool to cut extremely thin slices of material.  
 

 
 

Figure 3. An example brain slice clearly showing neuron-bodies, the dendritic-tree and 
axon-fibers 

 
In 1837 cell staining led to the discovery of the cellular structure of the cerebellum (a 
part of the brain at the back of the skull which is now known to be involved in the 
refinement of the control of the movement); in his research Purkinnje described and 
drew the structure of some large neurons (now known as Purkinje cells) labeled 
corpuscles and speculated that they had a role (collecting, generating and distributing) 
in intercellular communication. 
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