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Summary 
 
Fuzzy Systems have attracted the interest in numerous real world scenarios because 
these approaches assume that we do not deal with exact measurements or ‘pure’ random 
values. Fuzzy Logic deals with partial membership to the set and the key concept is the 
degree of set membership. These mathematical models (fuzzy sets) are the cornerstone 
of the Fuzzy Systems. A Fuzzy System is a system of variables which are associated 
using fuzzy logic, and are described in an interpretable way using linguistic expressions. 
This chapter will describe different existing methods for designing and tuning of fuzzy 
rule-based (FRB) systems. The different methods will be analyzed taking into account 
the historical developments, the needs of the contemporary computing, communication, 
robotics and other applications that require such systems to be implemented. 
 
In general, the methods and approaches can be divided into the FRB which designed by 
experts or autonomously by learning. However, the tuning is usually associated with the 
parameter learning and adaptation and is often considered as an optimization task 
aiming to produce an end result which deviates as less as possible from the desired or 
actual behavior which a FRB system aims to predict, control, classify or, simply, model. 
 
“So far as the laws of mathematics refer to reality, they are not certain. And so far they are certain, 

they do not refer to reality.” 
Albert Einstein 

 

“Everything is a matter of a degree” 
Bart Kosko 

 

 179  



COMPUTATIONAL INTELLIGENCE – Vol. I - Design And Tuning Of Fuzzy Systems - Plamen Angelov, José Antonio Iglesias  

©Encyclopedia of Life Support Systems (EOLSS) 

1. Introduction 
 
In 1965, Lofti Zadeh´s presented his seminal work in which he used the term “fuzzy 
sets” for the first time. As he described in the paper “Fuzzy Sets”: more often than not, 
the classes of objects encountered in the real physical world do not have precisely 
defined criteria of membership… Yet, the fact remains that such imprecisely defined 
“classes” play an important role in human thinking, particularly in the domains of 
pattern recognition, communication of information, and abstraction”. (Zadeh, 1965) 
With this idea in the background, he proposed the “fuzzy sets” as mathematical models 
of linguistic expressions which represent a “class” with a continuum of grades of 
membership.  
 
Fuzzy Logic deals with partial membership to the set; it means that an entity could be in 
two or more sets at the same time but to different degrees. Thus, the key concept is the 
degree of set membership. These mathematical models (fuzzy sets) are the cornerstone 
of the Fuzzy Systems. A Fuzzy System is a system of variables which are associated 
using fuzzy logic. These systems are described in an interpretable way using linguistic 
expressions. 
 
Fuzzy Systems have attracted the interest in numerous real world scenarios because 
most traditional approaches from classical statistics assume that we deal with exact 
measurements or ‘pure’ random values. The reality, however, is neither of the two 
extremes (neither ‘purely’ deterministic, nor ‘purely’ random). 
 
In normal set theory (where iS  represents a certain set), an object (represented as x  ) 
can either: 
a) belong to the set ( ix S∈ )  
b) not belong to the set ( ix S∉ ) 
 
However, a real-world scenario does not usually have a precise measurement or clear 
cut boundaries. For this reason, in a fuzzy system, an object can partially belong to a 
certain fuzzy set. Thus, the belonging (membership) to a set needs to be described by a 
value. This value of membership to the set i  is represented as iμ , and is normalized 
such that iμ  is in [0,1]. Also, it is required that the total membership to all sets of an 
object adds up to 1:  
 

1
1

R

i
i

μ
=

=∑  where k is the total number of sets. 

 
Taking into account the previous aspects, Fuzzy logic is a powerful methodology of 
how to describe rules which have high generalization and summarization ability. 
 
In order to clarify the proposed ideas, let us consider an example: Consumer buying 
behavior is influenced by several factors such as age and income. If we want to 
determine the influence of these factors on their buying behavior, we can create 
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different fuzzy rules. These rules link age and income with the possibility of a user of 
buying a specific product. The following rule is an example of this: 

( ) ( )
( )

IF  is  AND  is 

THEN  is 

Age Young Income High

Purchase High
  

 
Figure 1 represents the membership function distribution of the different fuzzy sets that 
represent the age in a fuzzy system. 
 

 

Figure 1. Example of the fuzzy sets that representing the age. 

This representation is called complete, if for any value of the variable (e.g. age) there 
exists at least one fuzzy set that describes it. Thus, a fuzzy set is described by its 
membership function.  

1.1. Types of Membership Functions 
 
Although there are various types of membership functions, we could consider the 
following types as the most commonly used ones: 
 

a) Triangular: The mathematical expression for the triangular membership 
function can be defined as: 

0

triangle( : , , )
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where  L  denotes ‘left’; R  denotes right and C  denotes centre. 
 
In this case, the precise appearance of this function depends on the values of 3 
parameters: L , C  and R . This type of membership function is shown in Figure 
2. 
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Figure 2. Example of Triangular Membership Function. 
  

b) Trapezoidal: The trapezoidal membership function is: 
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where L  denotes left lower boundary; L  denotes left upper boundary, R
 denotes right lower boundary, and R  denotes right upper boundary. 
 
These values are graphically represented in the following figure. 
 
 

 

 Figure 3. Example of Trapezoidal Membership Function. 

c) Gaussian: The Gaussian membership function is one of the more widely used 
functions and it can be defined using exponential: 
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where the focal point ( *x  ) represents the centre, and spread of the Gaussian is 
defined byσ . As it can be seen in Figure 4, the values of this type of 
membership function are smooth and non-zero at all points. 

  

Figure 4. Example of Gaussian Membership Function. 
 

d) Bell Shaped: The Bell Shaped membership function has symmetrical shape and 
it is specified by three parameters using the following expression: 
 

2
1Bell Shaped( : , , )

1
Bx A B C

x C
A

=
−
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where the parameter C  represents the center of the curve, and A  shows the 
width of the curve. This function is represented in Figure 5. 

 

 

Figure 5. Example of Bell Shaped Membership Function. 
 

e) Sigmoidal. This type of membership function can be open to the right or to the 
left and it is given by the following expression: 
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( )
1Sigmoidal( : , )

1 A x Cx A C
e− −=

+  
 

where C  represents the distance from the origin and A  determines steepness of 
the function. Depending on the sign of A  the function is inherently open to the 
right (if A  is positive) or to the left (if A  is negative).  
 

 
 

Figure 6. Example of Sigmoidal Membership Function. 
 

1.2. Fuzzy Rule Based Systems 
 
A Fuzzy Rule Based (FRB) System involves some degree of ‘computational 
intelligence’ since they are able to learn, approximate reasoning and support decisions. 
The interest in these systems has increased during the last decades since they provide a 
flexible and robust methodology to deal with noisy and incomplete data. Besides, the 
transparent and human interpretable rule-based structure of a FRB system is expressive 
enough to represent imprecise qualitative knowledge. 
 
The most important phase in the design of a FRB system is the creation of its rules. In 
the early approaches (during 1970-1980s), these rules were created using the knowledge 
and experience of a human expert. These experts were able to create a system which 
consists of several rules (IF-THEN rules). In this sense, they also use a method called 
Group Decision Making (GDM) which consists of multiple experts interacting to reach 
a (common) decision. Thus, different experts process the same input and then a group 
compromises the decision (the best alternative) is formulated by considering the 
different preferences of the experts. 
 
One of the pioneering FRB systems which used expert knowledge was DENDRAL 
(Heller, et al., 1974) which was developed to deduce the molecular structure of organic 
compounds from knowledge about fragments into which the compound had been 
broken. This system is still one of the most promising successes in Artificial 
Intelligence. Other pioneers in this field are the DARC system (Heller, et al., 1974) and 
the CHEMICS systems (Abe, et al., 1981).However, the creation of a FRB system by an 
expert is a difficult task since the number of parameters that define the rules of a system 
is usually very high, the relation between these parameters are not usually intuitive, the 
consequence of the different parameters and its values is usually difficult to detect. For 
this reason, the expert knowledge has been usually used in conjunction with the 
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information that can be extracted from the input-output (I/O) data. Specially, fuzzy 
clustering has been used widely for this task since obtaining different clusters, different 
rules can be represented. This trend started in 1980-1990s. However, the structure of the 
FRB systems created in this way was still usually fixed. 
  
In order to solve this problem and create structures that are able to adapt to the changes 
of the data, a fast, recursive, incremental, memory efficient and adaptive algorithm has 
been proposed by using Evolving Fuzzy Systems (EFS) which will be detailed later on. 
This trend started around year 2000 and is still under intensive development by the 
researchers worldwide. 
 
2. Fuzzy Systems 
 
The main components of a FRB system are: the rule base and an associated inference 
process. The structure of a fuzzy system consists of a set of fuzzy rules (linguistically 
expressed) which are composed of antecedent (IF) and consequent (THEN) parts. The 
antecedent part consists of a number of fuzzy sets that are linked with fuzzy logic 
operators such as ‘AND’ (conjunction), ‘OR’ (disjunction), ‘NOT’ (negation) and 
several families of operators that have been introduced in the fuzzy set theory for these 
logical connectives (such as min and max operators) (Klir & Folger, 1988). The number 
of fuzzy rules and inputs is part of the structure of the system. 
 
During the last decade of the previous century there was an increase of applications of 
fuzzy logic-based systems mainly due to the introduction of fuzzy logic controllers 
(FLC) by Ebrahim Mandani in 1975 (Mandani & Assilian, 1975), the introduction of 
the fuzzily blended linear systems construct called Takagi-Sugeno (TS) fuzzy systems 
in 1985 (Tomohiro & Michio, 1985), the theoretical proof that FRB systems are 
universal approximators(Wang & Mendel, 1992) and recently, the AnYa type FRB 
(Angelov & Yager, 2011). 
 
2.1. FRB Systems Types 
 
Depending on the structure of the IF-THEN rules, FRB systems can be classified into 
the following main types:  

1) Mandani-type (Mamdani, 1977),  
2) Takagi-Sugeno-type (Tomohiro & Michio, 1985) and  
3) AnYa type (Angelov & Yager, 2011). 

 
2.1.1. Mamdani Type 
 
In this type of systems (also called linguistic systems), the antecedent (IF-part of the 
rule) and the consequent (THEN-part of the rule) are fuzzy propositions. Their rules are 
of the following form: 
 

( ) ( ) ( )
( )

1 1 2 2:  IF is   AND is   AND … AND is          

THEN 

(    

 is ,   1, 2, .

i i i
i n nRule x A x A x A

y B k R= …
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where , 1, 2 , ,ix i n= …  is the input variable, ,   1, 2, ,i
jA j n= …  and B  are 

linguistic terms (such as Small, Large, High, Low, etc.) represented by fuzzy 
sets, y  is the output associated with the given rule, and R  is the number of rules 
in the model.  
 

This kind of linguistic fuzzy models are useful for representing qualitative knowledge. 
 
For example, the following fuzzy rule could be part of the rules of a Mamdani type 
fuzzy model: 
 

( ) ( )
( )

1 :  IF _  is  AND _ _  is 

THEN _ _  is 

Rule Car Weight High Volume of Cylinders High

Miles Per Gallon Low
  

where High, Low, etc. are fuzzy sets defined by their membership functions. 
 

2.1.2. Takagi-Sugeno Type 
 
In this type of systems (also called TS systems), the antecedent is defined in the same 
way as in the Mandani type, while the consequent is defined as a function of the input 
variables: 
 

( ) ( ) ( )
( )

1 1 2 2

0 1 1

:  IF is  AND is  AND … AND is         

THEN       ,     1, , .

   

2

i i i
i n n

n n

Rule x A x A x A

y a a x a x i R= + + … + = …
  

 
where xi, Ai

j and y are input variables, linguistic terms, and output variable 
associated with the rule respectively, and a0, a1,… and an are consequence 
parameters. This model combines the linguistic description with standard 
functional regression: the antecedents describe fuzzy regions in the input space 
in which the consequent functions are valid.  
 

The following fuzzy rule is an example of a rule that could be part of a Takagi Sugeno 
(TS) type fuzzy model: 
 

( ) ( )
( ) ( )( )

:  IF _  is  AND _ _  is 

THEN      *  _    *  _ _
iRule Car Weight High Volume of Cylinders High

MPG a b Car Weight c Volume of cylinders= + +
  

where MPG  denotes miles per galloon. 
 
2.1.3. AnYa Type 
 
This type of systems (called Granular Decomposition with Input Vector Membership 
but it will be referred by AnYa) was recently introduced in (Angelov and Yager, 2010). 
 
In this novel method, the system design process is significantly simplified and it will be 
very detailed in the next section. 
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EFS  : Evolving Fuzzy Systems 

EFuNN : Evolving Fuzzy Neural Network  

ELM  : Evolving Local Means 

ePL  : evolving Participatory Learning model 

eNF  : evolving Neuro-Fuzzy Systems 

eTS  : evolving Takagi–Sugeno type fuzzy rule-based system  

eTS+  : evolving TS model from streaming data 

FCM  : Fuzzy C-Means 

FLC  : Fuzzy Logic Controllers 

FLEXFIS : FLEXible Fuzzy Inference System 

FRB  : Fuzzy rule-based system 

GA  : Genetic Algorithms 

GDM  : Group Decision Making 

KDE  : Kernel Density Estimation 

MIMO : Multi-Input–Single-Output 

MISO  : Multi-Input–Multi-Output system 

MoM  : Mean of the Maximum Method 

PSO  : Particle Swarm Optimization 

RLS  : Recursive Least Squares 

SAFIS    : Sequential Adaptive Fuzzy Inference System 

simpleTS : Simplified eTS model 

SOFNN  : Self-organizing Fuzzy Neural Network 

TS  : Takagi Sugeno 

wRLS  : (fuzzily) weighted RLS 
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