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Summary 
 
Evolutionary Computation (EC) algorithms are expected to be good black-box 
optimizers. Their performance should remain statistically appreciable on a wide range 
of or at least on some well-defined classes of optimization problems. Before an 
Evolutionary Algorithm (EA) can be published in a reputed journal, it usually needs to 
go through a number of tests to detect its strengths and weaknesses. Such investigation 
also includes the problem class to which the algorithm is most applicable and the 
problem characteristics that may deceive it from carrying out an effective search. Since 
the early days of research on and with EAs for real parameter optimization, a popular 
approach is to investigate their performances on a number of mathematical functions, 
also called benchmark functions, which are expected to capture various aspects of the 
complexities of the real world problems.  
 
This chapter provides a comprehensive review of benchmarking EAs by using 
mathematical test functions. The chapter discusses the evolution of the benchmarking 
procedure itself along with the complexities and downsides of the modern day’s test 
problems. It also elaborates on the performance measures used for comparing the search 
abilities of various EAs. The discussion then proceeds to focus on the statistical 
methods currently in use to judge the significance of the results returned by an EA. The 
chapter is concluded with a few potential issues that need the attention of the EC 
researchers. The discussions of this chapter are mainly centered on EAs for solving 
single-objective box-constrained function optimization problems involving continuous 
variables. 
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1. Introduction  
 
Generally speaking, optimization involves search for a vector of the form 

[ ]T

1 2 3, , , ...., DX x x x x=
G

 which contains the parameters deciding some kind of system 
performance. Going by the name, each component xi of the vector is a real number for 
real parameter or continuous optimization. The common practice (Bӓck et al., 1997) is 
to model an objective function (also called cost function) that determines the system 
behavior and based on its value obtained iteratively, we are able to judge how far we 
have reached in our search for the best solution. It can be simply put that our task is to 
perform search in solution space in order to find a parameter vector *X

G
which minimizes 

an objective function ( )f X
JJG

( ): Df Ω ⊆ →\ \ , i. e. ( ) ( )*    X X Xf f ∈Ω< ∀
G G G

, where Ω  

is a non-empty set representing the search domain. If the function is convex and obeys 
some regularity assumptions, there exists a plethora of mathematical programming 
techniques (see for example (Boyd and Vandenberghe, 2004)) to solve the above 
mentioned problem. However, real world is not so easy going and very often we have to 
face optimization problems where the objective functions are non-convex, non-
differentiable (the gradient tricks will not work!), rugged, ill-conditioned and so on. 
These features prohibit one to use the exact mathematical techniques. For getting a near 
optimal solution (which will work within a predefined level of tolerance) population-
based EAs appear to be promising methodology. An EA uses mechanisms inspired by 
Darwinian evolution, such as reproduction, mutation, recombination, and selection 
(Eiben and Smith, 2003). Candidate solutions to the optimization problem play the role 
of individuals in a population, and the fitness function determines the quality of the 
solutions. Evolution of the population then takes place through the repeated application 
of the above operators. The only feedback information that an EA uses to guide its 
population members is the evaluation of the function to be optimized at a set of trial 
points. The challenge is to obtain an acceptable (the acceptability is again very much 
dependent on the optimization scenario!) solution by using minimum number of 
evaluations of the objective function. A few very prominent EAs of current interest 
include Differential Evolution (Storn and Price, 1997; Das and Suganthan, 2011; 
Mallipeddi et al., 2011), Covariance Matrix Adaptation Evolution Strategies (CMA-
ESs) (Hansen and Auger, 2013) real coded Genetic Algorithm with Multi-Parent 
Crossover (GA-MPC) (Elsayed et al., 2011), Estimation of Distribution Algorithms 
(EDAs) (Dong et al., 2013) etc. 
 
Design of an EA primarily involves devising useful genetic operators (various kinds of 
mutation, recombination, and selection). Proposals for devising a new EA or deriving 
the improved version of an EA are numerous in literature and they are primarily based 
on some kind of intuitionistic reasoning instead of mathematical proofs. Although there 
are a few studies (Jägersküpper, 2007; Akimoto et al., 2012) that show the local linear 
convergence or global convergence, obtaining the speed of convergence of an EA 
mathematically is quite difficult and sometimes impossible. Moreover, studying the 
transition phase of the algorithm is important in practice, while investigating the 
transition phase mathematically seems more complicated. So what may be the way out 
to establish the effectiveness of an EA? The only way seems to perform numerous 
experiments by running the EA on various classes of functions and comparing the 
results against the state-of-the-art EAs. Since the early days of research on EAs, a 

 298  



COMPUTATIONAL INTELLIGENCE – Vol. I - Evaluating The Evolutionary Algorithms - Classical Perspectives And Recent 
Trends -Swagatam Das 
 

©Encyclopedia of Life Support Systems (EOLSS) 
 

popular practice is to run an EA on a set of numerical functions that may be relied on as 
a representative set to capture most of the complex features arising from real life 
optimization scenarios. These functions usually stem from very old mathematical 
functions existing in the literatures on numerical methods. An EA is usually run on such 
a function till the exhaustion of a fixed budget of the number of Function Evaluations 
(FEs) and then the best-of-the-run function value is noted. As will be discussed shortly, 
there may be other stopping criteria for an EA and these may also serve as the basis of 
comparison between two different EAs. Since EAs start with a randomly initiated 
population and incorporate stochastic search operators (those coming with various 
random numbers), results of running an EA repeatedly on the same problem are not 
identical in practice. Hence a set of independent runs are taken on each function and the 
mean best-of-the-run values and standard deviations are usually reported. Less standard 
deviation indicates greater robustness of the EA as the results do not deviate much over 
the repeated runs. 
 
A possible shortcoming with such empirical procedure is that the resulting conclusions 
depend quite heavily on what problems are used for testing and nevertheless on the 
algorithms that are being compared. This could result in a set of algorithms that are 
designed and tuned to perform well on a particular test suite. However, the resulting 
specialization may or may not translate into improved performance on other problems 
or applications. Thus, it is imperative that benchmarking suites should contain problems 
that are both challenging and diverse. Test problems can be designed to be easy to 
describe, understand, and visualize. They are also easy to implement, fast, and their 
optima are often known in advance. The need is to have a class of benchmarking 
functions that are well-understood. In addition, appropriate performance measures 
should be employed and suitable statistical methods should be used for drawing solid 
conclusions.  
  
In this chapter we begin with a review of the classical and modern numerical benchmark 
functions used to evaluate EAs and various nature inspired metaheuristics. We then 
discuss on various performance measures used in literature to judge the merits of an EA. 
We also briefly elaborate on the statistical test procedures adopted for comparing among 
various EAs. Finally we point out some issues that demand attention from EC 
researchers to meet the challenges of the ever-growing and rapidly changing field of 
engineering optimization. 
 
2. Classical Numerical Benchmarks  
 
One of the first attempts to establish a set of problems to test the performance of the 
EAs was due to De Jong in his Ph.D. dissertation (De Jong, 1975). The De Jong test 
suite contained a set of five problems with varied characteristics which were used to test 
the effectiveness of the Genetic Algorithms (GAs). GAs at that time were mostly based 
on binary encoding for the search variables. In those days, real numbers were 
represented by bit strings comprising sequences of ‘0’ and ‘1’ and this would invariably 
incur into quantization errors in context to function optimization. The functions and 
their characteristics are summarized in Table 1. The first function of De Jong's or 
Sphere function ( 1f ) is one of the most simple test functions available in literature. This 
continuous, convex, unimodal and additively separable function can be scaled up to any 
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number of variables. It belongs to a family of functions called quadratic functions and 
has only one global minimum at [ ]T0,0, ,0X =

G
… . The second function, called the 

generalized Rosenbrock’s function ( 2f ) is a challenging one, especially in higher 
dimensions. It has a very narrow ridge. The tip of the ridge is very sharp, and it runs 
around a parabola. Some classical EAs are not able to discover good directions and 
consequently underperform in this problem. This function behaves as unimodal in two 
dimensions but becomes multimodal for more than 3 dimensions (Shang and Qiu, 
2006). The third function is called the step function ( 3f ) and it represents the problem 
of flat surfaces. Flat surfaces are obstacles for optimization algorithms, because they do 
not give any information as to which direction is favourable. Unless an algorithm has 
variable step sizes, it can get stuck on one of the flat plateaus. The fourth function, 
known as quartic ( 4f ), is a simple unimodal function padded with noise. The Gaussian 
noise ensures that the algorithm never gets the same value on the same point. 
Algorithms that do not perform well on this test function are expected to yield poor 
results on other functions mixed with noise terms. The fifth one, called the Shekel’s 
foxholes function ( 5f ) is an example of many (in this case 25) local optima. Many 
standard EAs get stuck in the first peak they find. 

 
Table 1. De Jong’s Test Suite (De Jong, 1975). D  denotes the dimensionality of the 

problems. 
 

Other test sets have been subsequently proposed in (Ackley, 1987), (Davidor, 1991), 
(Forrest and Mitchell, 1993), (Mühlenbein, 1991), and (Schaffer et al., 1989). Five other 
popular test functions have been listed in Table 2. Among these the Rastrigin’s function 
( 6f ), Schwefel’s function ( 7f ), Ackley’s function ( 8f ), and Griewank’s function ( 9f ) 
can be scaled to any number of variables.  
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The Rastrigin’s Function is a typical example of non-linear multimodal function. It has 
several local optima arranged in a regular lattice, but it has only one global optimum. It 
was first proposed by Rastrigin (Törn and Zilinskas, 1989) as a two-dimensional 
function and was further generalized for higher dimensions by (Mühlenbein et al., 
1991). This function poses a fairly difficult problem due to its large search space and its 
large number of local minima.  
 

Problem Range Characteristics 

( )( )2
6

1

( ) ( 10) 10cos 2
D

i i
i

f X D x xπ
=

= ∗ + −∑
G

 

[ ]5.12,5.11ix ∈ −

 
Rastrigin’s Function: 
scalable, additively 
decomposable and 
multimodal 
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Schwefel’s Function: 
scalable, separable, and 
multimodal  
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Griewank’s Function: 
scalable multimodal 
function 
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two-dimensional 
multimodal and non 
separable function  

 
Table 2. Other common test functions for evaluating evolutionary algorithms 

 
The Schwefel’s function (Schwefel, 1981) is symmetric, separable, and multimodal. 
This function is deceptive in that the global minimum is geometrically distant, over the 
parameter space, from the next best local minima. Therefore, the search algorithms are 
potentially prone to convergence in the wrong direction. In addition, it is less symmetric 
than the Rastrigin’s function and has the global minimum at the edge of the search 
space. Additionally, there is no overall guiding slope towards the global minimum like 
in Ackley's, or less extremely as in the Rastrigin's function. 
 
The Ackley’s function is a continuous, multimodal, and separable function. It is 
obtained by modulating an exponential function with a cosine wave of moderate 
amplitude (Ackley, 1987). Originally this problem was defined for two dimensions, but 
the problem has been generalized to higher dimensions later (Bäck, 1996). The Ackley’s 
is a highly multimodal function that has huge number of local minima but only one 
global minimum. Its topology is characterized by an almost flat (due to the dominating 
exponential) outer region and a central hole or peak where the modulations by the 
cosine wave become more and more influential. The functional landscape is riddled 
with several local optima that, for the search range, look more like noise, although they 
are located at regular intervals.  
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    (b) Rosenbrock’s function f2 
                           (a) Sphere f1 
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      (c) Step function f3                     

   (d) Quartic function f4 
 
 

  
 
                                                   (e)Shekel’s foxholes function f5. 
 
         Figure 1. 3-D map for 2-D functions of f1 – f5 (De Jong’s functions) of Table 1. 
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Griewank’s function (Griewank, 1981; Locatelli, 2003) is similar to the function of 
Rastrigin. It has many widespread local minima regularly distributed. The function 
interpretation changes with the scale; the general overview suggests convex function, 
medium-scale view suggests existence of local extrema, and finally zooming on the 
details indicates complex structure of numerous local extrema. It has been found that the 
summation term of the function induces a parabolic shape while the cosine function in 
the product term creates waves over the parabolic surface; these waves give rise to local 
optima (Whitley et al., 1996). A quick study of the low-dimensional versions of this 
function shows that the basin of attraction containing the global optimum appears to 
encompass a larger percentage of the total space as the search volume expands. The 
contribution of the product term becomes smaller as the dimensionality of the search 
space is increased and the local optima induced by the cosine term become less severe. 
Thus, as the dimensionality of the search space enhances, this function becomes easier 
for numeric real-valued representations. From a testing point of view, this characteristic 
of the Griewank’s function makes it undesirable at higher dimensions. The function 
labeled as 10f in Table 2 is known as the stretched sine wave function (Schaffer et al., 
1989). Functions

1 3 5 6, , ,f f f f , and 7f  are seen to be examples of separable functions. On 
the other hand, although f4 is separable, the addition of noise might prevent an EA from 
locating the optimal solution. The coordinate wise search algorithms (Box et al., 1969) 
can be used to solve such functions as they exploit the separability by solving for each 
parameter independently. Three dimensional maps of the functions listed in Tables 1 
and 2 have been shown in Figures 1 and 2 respectively. 
 
Yao et al. compiled a set of 23 functions in their 1999 study on the Fast Evolutionary 
Programming (FEP) (Yao et al., 1999) which included all the previously mentioned test 
functions. This set has been used either in parts or as a whole later on in numerous 
papers to compare among various EAs, see for example (Leung and Yuping, 2001), 
(Lee and Yao, 2004), (Das et al., 2009). 
 
It is often possible that the algorithms tested on the above test problems can become 
customized for that particular seethe particular benchmark suite. This can raise some 
serious concerns when the test suite contains problems that do not reflect nature of the 
problems that EAs normally used to solve.  
 
3. General Guidelines for Designing Benchmark Problems 
 
The problems contained in test suites should be indicative of the types of applications 
for which an EA is appropriate. For example, it would be inappropriate to test heuristic 
search algorithms on a test suite made up of only linear functions, since most of the 
real-world problems are rarely linear in nature. There are certain characteristics that a 
good benchmark suite should possess. A test suite must contain problems with diverse 
ranges of difficulty and structure. Such a suite should also comprise of problems that are 
multimodal, sparse, and non-separable. In addition, suitable performance evaluation 
metrics should be employed to reveal the applicability of the algorithm in different 
situations. The presence of a few unimodal instances helps to test the convergence speed 
of the algorithm (Chapter 14, Eiben and Smith, 2003). 
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solutions and ending with the model that generates only the global 
optima.  

Differential 
Evolution (DE) 

: A powerful derivative free optimization algorithm that works by 
by maintaining a population of candidate solutions and creating 
new candidate solutions by combining the existing ones through a 
simple difference vector based formulae, and then keeping 
whichever candidate solution has the best score or fitness on the 
optimization problem at hand..  

Particle Swarm 
Optimization 
(PSO) 

 : A metaheuristic optimization algorithm that imitates the 
collectively intelligent behavior of the group of social creatures 
like school of fish or flock of birds; works by having a population 
(called a swarm) of candidate solutions (called particles). These 
particles are moved around in the search-space according to a few 
simple formulae. The movements of the particles are guided by 
their own best known position in the search-space as well as the 
entire swarm's best known position.  

Hypothesis 
testing 

: Refers to the process of choosing between competing hypotheses 
about a probability distribution, based on observed data from the 
distribution. It is a core topic in mathematical statistics, and indeed 
is a fundamental part of the language of statistics..  
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