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Summary 
 
Since the early 1990s the field of Evolutionary Computation has experienced a 
tremendous growth of interest resulting in many new ideas, new algorithms and new 
applications. This growth is both a blessing and a curse. It serves as strong evidence of 
the usefulness of these techniques, but makes it difficult to see “the big picture” 
regarding how the many instances of evolutionary algorithms relate to each other, and 
how to choose among them for a particular application. The purpose of this chapter is to 
provide a general framework for evolutionary algorithms that helps clarify these 
relationships and supports informed choices. 
 
1. Introduction 
 
It is probably best to begin by clarifying what we mean by the term “evolutionary 
algorithm”. Although the term evolution is often used in a very general sense to 
describe systems that are changing slowly and incrementally over time (e.g., an 
evolving legal system), it also is used in a very specific sense to describe Darwinian-like 
systems that evolve over time via the interacting processes of reproductive variation and 
selection. It is this latter sense of the word that is the focus here: algorithms that exhibit 
Darwinian-like evolutionary change via variation and selection. 
 
That still leaves two possible interpretations to the term “evolutionary algorithm”, 
relating to the goal or intended use of the algorithm. Scientists studying biological 
evolutionary systems often gain insight into the complex behavior of these systems by 
constructing computational models capable of simulating the observed evolutionary 
behavior at some level of fidelity. While important and interesting, that is not the focus 
here. Rather, the goal is to design new and powerful algorithms for solving difficult 
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computer science and engineering problems (e.g., search and optimization problems). 
Hence, the name of the field: Evolutionary Computation. 
 
So, the first step in developing a general framework for evolutionary algorithms is to 
understand that they are part of a broader class of “nature-inspired” algorithms: 
algorithms developed not from mathematics or engineering first principles, but rather by 
understanding and abstracting the information processing mechanisms of systems found 
in nature. An early example of this is “simulated annealing”. More recent examples are 
“ant colony” and “particle swarm” optimization techniques. 
 
A second important step in developing a general framework for evolutionary algorithms 
is to understand that they are also part of a broader class of algorithms called “meta-
heuristics”. Heuristic algorithms incorporate problem-specific information in order to 
achieve efficiency improvements (e.g., assuming linearity). Meta-heuristic algorithms 
prove a framework for creating heuristic algorithms capable of exploiting problem-
specific information. For example, the notion of a “steepest descent” algorithm is a 
meta-heuristic algorithm that is instantiated in many different topology- and problem-
specific ways. 
 
This, then, is the theme for the remainder of the chapter: to understand in more detail 
the sense in which evolutionary algorithms are nature-inspired meta-heuristics. 
 
2. Simple Evolutionary Algorithms 
 
In general, evolutionary algorithms are complex, non-linear systems capable of 
exhibiting a wide range of frequently unexpected and difficult to analyze behavior. The 
strategy in this chapter is to deal with this issue by starting simple and gradually adding 
complexity. In the author’s mind, the simplest evolutionary algorithms are those that 
maintain a single fixed-size population of individuals that each represent possible 
solutions to the problem of interest, where the quality of the solution they represent is 
their “fitness”, and for which there are simple abstract notions of reproductive variation 
and natural selection. This can be made a bit more precise by restating it in algorithmic 
pseudo-code: 
 

Randomly generate an initial population of size M. 
Evaluate the fitness of each of these individuals. 
 
Do until some stopping criterion is met: 
 Select some parents to produce some offspring. 
 Evaluate the fitness of the offspring. 
 Reduce the population size to M by selecting some individuals to die. 
 End Do 
  
Return as the problem solution, the individual with the highest observed fitness. 

 
This algorithmic template is our first example of a surprisingly powerful evolutionary 
meta-heuristic, namely, one can create highly parallel adaptive search algorithms by 
simulating at a high level of abstraction the evolutionary dynamics of a natural system. 
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However, to apply this to a specific class of problems, many additional details need to 
be specified. For example, 
 

- How an individual in the population represents a problem solution. 
- How big the population should be. 
- How parents are selected. 
- How offspring are produced. 
- How many offspring are produced. 
- Who dies. 

 
Each such decision impacts the overall behavior of the instantiated evolutionary 
algorithm. Even the earliest examples of evolutionary algorithms exhibited a wide 
variety in these choices, resulting in several “canonical” subclasses such as “evolution 
strategies” [Schwefel, 1995], “evolutionary programming” [Fogel, 1995], and “genetic 
algorithms” [Holland, 1975]. 
 
Today, we have a wide array of evolutionary algorithms and their applications. That 
provides us with the opportunity to take a step back and lay out a general framework in 
order to better understand the range of choices and their impact on problem-solving 
capabilities. That is the goal for the remainder of this chapter. First, we explore the 
implications of design decisions listed above for simple evolutionary algorithms, and 
then use that understanding to explore their areas of application as well as various 
extensions to simple evolutionary algorithms. 
 
2.1. How Individuals Represent Problem Solutions 
 
There’s a saying often quoted by realtors that goes something like this: What are the 
three most important factors that determine the value of a piece of property? Answer: 
location, location, location!  
 
A similar saying might be said to apply to evolutionary algorithm design: What are the 
three most important design decisions that impact the performance and effectiveness of 
an evolutionary algorithm? Answer: representation, representation, representation! 
 
That’s perhaps an overstatement, but true more often than not in that, for most 
problems, the solution space to be searched by an evolutionary algorithm can be 
represented in a variety of ways, some of which are more conducive to evolutionary 
search than others. That implies that the choice of internal representation has two 
possibly conflicting goals: to chose a representation that is in some sense “natural” to a 
problem’s solution space, and one that is “evolution friendly”. 
 
If we analyze representations from a biologically-inspired perspective, the choices fall 
into two general categories: “genotypic” representations and “phenotypic 
representations”. Genotypic representations encode problem solutions in a manner 
analogous to the biological genetic code. That is, solutions are represented internally as 
strings formed from some alphabet. For example, traditional Genetic Algorithms 
represent solutions as binary strings. Reproductive variation is achieved by making 
changes to the binary string representation and the fitness of new strings is determined 
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by first decoding the string (i.e., mapping it back into the problem solution space), and 
then evaluating the quality of that solution. 
 
By contrast, phenotypic representations represent problem solutions directly with no 
intermediate encoding. For example, Evolution Strategies represent the set of real-
valued parameters to be optimized as vectors of real numbers. Reproductive variation is 
achieved by changing the values stored in these vectors and fitness of the new vector of 
values is obtained directly by invoking the objective function with these values.  
 
To illustrate this design choice, consider how one might apply an evolutionary 
algorithm to a job-shop scheduling problem. A canonical Genetic Algorithm approach 
would focus on designing a mapping of the space of possible solutions to/from binary 
strings, leaving the reproductive variation operators unchanged. A canonical 
Evolutionary Strategy approach would represent candidate schedules directly and focus 
on designing new and appropriate reproductive variation operators. 
 
EAs that are designed to manipulate universal encodings have the advantage of 
increasing significantly the portability of the EA code from one application to the next 
in the sense that applying such EAs to a new problem class simply requires writing the 
encoding/decoding procedures. By contrast, EAs that focus on phenotypic 
representations often have opportunities to introduce problem-specific efficiency-
enhancing features, but at a cost of significant redesign and re-implementation of much 
of the EA code. 
 
2.2. How Offspring are Produced 
 
A key element of the evolutionary search process is the notion of reproductive variation, 
namely, how existing solutions (parents) are used to produce new solutions (offspring) 
that “inherit” many of the features of their parents (exploitation) but are different 
enough to provide some novelty (exploration). To achieve this, an EA practitioner must 
choose reproductive operators that manipulate the internal representation of solutions in 
useful and meaningful ways. This, in turn, emphasizes the tight coupling between the 
choice of representation and the choice of reproductive operators. 
 
From a biological perspective, reproductive variation is achieved in two rather distinct 
ways: asexual and sexual reproduction. Asexual reproduction involves cloning single 
parents and then applying a mutation operator to provide some variability. This is the 
strategy used in traditional Evolution Strategies and Evolutionary Programming 
approaches. By contrast, sexual reproduction involves combining elements of more than 
one parent (generally with a small dose of mutation) to produce offspring that inherit 
some features from each parent. This is the strategy used in traditional Genetic 
Algorithms via a recombination operator (crossover) that manipulates binary strings. 
 
From a search perspective these two reproductive strategies differ significantly. Asexual 
reproduction tends to be more of a local search operator producing offspring in a nearby 
neighborhood of their parents. By contrast, sexual reproduction tends to be more of a 
global search operator producing offspring that are frequently quite far from their 
parents. 
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Traveling salesperson problems (TSPs) provide a simple but clear illustration of the 
issues of representation and reproductive variation. The challenge for the traveling 
salesperson is to minimize the distance he/she travels in visiting each of N cities exactly 
once and returning home (i.e., a tour). The solution space is easily seen to be all possible 
permutations of the order in which the N  cities are visited, the size of which grows 
factorially as a function of N . 
 
The most “natural” representation is just an ordered list of cities, a fixed-length vector 
of size N  with each vector element containing a city code. Given this representation, 
we now need to define reproductive variation operators. Single point mutation operators 
won’t work, nor will standard crossover operators since both produce offspring that are 
no longer permutations of the cities to be visited. Rather, one needs to choose 
reproductive operators that provide variation while preserving the permutation property. 
In the case of mutation, that is not hard to do (e.g., defining mutation as swapping two 
cities’ positions in the tour). It is, however, more difficult to define a useful 
recombination operator. The evolutionary computation community has explored this 
issue extensively, concluding in many cases that this is best achieved by adopting a less 
“natural” representation of TSP tours (see, for example, Whitley (1989). 
 
For effective search in general, one needs a combination of local and global search 
mechanisms. There is considerable experimental evidence that including both sexual 
and asexual reproductive operators provides an effective blend of local and global 
search. As a consequence, many evolutionary algorithms today use a combination of 
both. 
 
2.3. How Individuals are Selected 
 
In the simple evolutionary algorithm template give earlier, there are two points at which 
individuals need to be selected: when choosing parents to produce offspring and when 
choosing which individuals will survive into the next generation. Both of these points 
are opportunities to use fitness information to bias the search. A natural first thought is 
to select only the best individuals to reproduce and to survive. 
 
However, that results in a “greedy” EA algorithm. Greedy algorithms are a well-studied 
class of heuristic search procedures that converge rapidly, but not necessarily to the best 
solution. For some problem domains, rapid convergence to a nearby local optimum is 
more than adequate. For others, a slower, more diffuse search is required to avoid 
getting immediately trapped in a local optimum. 
 
If we adopt the meta-heuristic perspective here, it is important to be able to choose the 
amount of greediness when applying an evolutionary algorithm to a particular problem. 
Fortunately, we have a well-studied and well-understood collection of selection 
mechanisms to choose from: 
 

- Truncation selection: choose only the N  fittest individuals. 
- Tournament selection: (repeatedly) choose K individuals at random and keep 

only the best of the K selected. 
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