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Summary 
 
Throughout the years, different applications show a growing complexity in fields like 
optimization, learning or modeling. Under these circumstances, traditional approaches 
lack from the required properties to solve these problems appropriately. Fortunately, 
researchers and engineers have been able to overcome these difficulties by applying 
more sophisticated methodologies. Among all techniques, those related to 
Computational Intelligence can be stressed as one of the most well-suited solutions, 
since they are designed for adapting to the problem itself and therefore to provide a 
higher performance than standard algorithms.  
 
The collaboration among the components of Computational Intelligence can even 
improve the results than applying them on isolation. In this work, we will carry out an 
overview of the main hybridizations that allow enhancing the quality of this kind of 
techniques. In particular, we will study the synergy of different approaches, including 
Genetic Fuzzy Systems, Neuro-Fuzzy Models and Evolutionary Artificial Neural 
Networks. 
 
1. Introduction to Computational Intelligence 
 
Current real applications in engineering are demanding for more resources in order to be 
able to successfully overcome the tasks to be performed, i.e. there are more complex 

 139  



COMPUTATIONAL INTELLIGENCE – Vol. II - Hybrid Computational Intelligence - Alberto Fernández, Rafael Alcalá, José 
Manuel Benítez, Francisco Herrera  
 

©Encyclopedia of Life Support Systems (EOLSS) 
 

problems which need to be addressed by high quality approaches. These approaches 
need to be also dynamical in order to adapt themselves to several types of scenarios in 
engineering and intelligent data analysis problems. 
 
A family of strategies has shown to fit properly as a solution to this issue. They are 
known as Computation Intelligence (CI) or soft computing approaches. Although there 
is no exact definition on what we refer with CI, we will follow the guidelines from 
Bezdek (Bezdek 1994) which stated: “a system is computational intelligent when it: 
deals with only numerical (low-level) data, has pattern recognition components, does 
not use knowledge in the artificial intelligence sense; and additionally when it (begins 
to) exhibit (i) computational adaptivity, (ii) computational fault tolerance, (iii) speed 
approaching human-like turnaround, and (iv) error rates that approximate human 
performance.” 
 
Although there is not yet full agreement on what CI exactly is, there is a widely 
accepted view on which areas belong to CI: Artificial Neural Networks (ANN), Fuzzy 
Sets (FSs) and Fuzzy Logic (FL) systems and Evolutionary Computation (EC). In 
addition, CI also embraces techniques that stem from the above three or gravitate 
around one or more of them, such as metaheuristics and optimization techniques 
(Verdegay et al. 2008) (swarm intelligence, artificial immune systems, and so on), as 
well as other knowledge representation approaches for managing imprecision or 
uncertainty, i.e., Dempster-Shafer theory, multi-valued logic, or rough sets, among 
others (Bello and Verdegay 2012). 
 
The aim of this chapter is to go further on the topic of CI and to introduce several 
hybridizations that are derived with the objective of improving the performance and 
applicability of this kind of solutions. Specifically, we will introduce three different 
approaches which have been widely studied in the specialized literature. They are the 
joint of fuzzy systems with Evolutionary Algorithms (EAs), known as Genetic Fuzzy 
Systems (GFSs), the combination of fuzzy systems with ANNs, known as Neuro Fuzzy 
Models, and finally the integration of EC in the development of ANNs, which result in 
Evolutionary Artificial Neural Networks (EANNs). 
 
In order to do so, this chapter is arranged as follows: in Section 2 we will introduce the 
core areas of Computational Intelligence, describing the main features of FSs and FL, 
EAs and NNs. Next, we will extend the information on the hybridization of these 
systems; GFSs will be developed in Section 3, whereas Section 4 will be devoted to 
Fuzzy Neural Networks and Section 5 will include the description for EANNs. Finally, 
Section 6 will conclude this work.  
 
2. Core Areas of Computational Intelligence: Fuzzy Logic, Evolutionary 
Algorithms and Neural Networks 
 
As we stated in the introduction of this work, CI (Craenen and Eiben 2005) is related to 
the areas of FS and FL, EAs and ANNs. In this section we will briefly introduce each 
one of these core areas in order to set the basis for the remainder of the chapter. 
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2.1. Fuzzy sets, Fuzzy Logic and Fuzzy Systems 
 
An FS is distinct from a crisp set in that it allows its elements to have a degree of 
membership. The core of a FS is its membership function: a surface or line that defines 
the relationship between a value in the set’s domain and its degree of membership. In 
particular, according to the original ideas of Zadeh 1965, membership of an element x  
to a fuzzy set A , denoted as ( )A xμ or simply ( )A x , can vary from 0 (full non-
membership) to 1 (full membership), i.e., it can assume all values in the interval [0, 1].  
 
We must point out that this is clearly a generalization and extension of multi-valued 
logic, in which degrees of truth are introduced in terms of the aforementioned 
membership functions. These functions can be seen as mapping predicates into FSs (or 
more formally, into an ordered set of fuzzy pairs, called a fuzzy relation). FL can thus 
be defined as a logic of approximate reasoning that allows us to work with FSs (Klir and 
Yuan 1995, Zimmerman 2010). In this manner, it allows a simplicity and flexibility 
which makes them superior with respect to classical logic for some complex problems. 
This can be achieved as they are able to cope with vague, imprecise or uncertain 
concepts that human beings use in their usual reasoning (Pedrycz and Gomide 1998).   
 
Fuzzy systems (Berthold 2004) are derived from the conjunction of the concepts of FSs 
and FL, and they compose one of the cornerstones of CI. Usually, it is considered a 
model structure in the form of fuzzy rule-based system (FRBS), which are composed of 
a Knowledge Base (KB) that includes the information in the form of IF-THEN fuzzy 
rules, whose antecedents and consequents are composed of FL statements, and an 
inference engine module. They have been successfully applied to control problems 
(Palm et al. 1997), modeling (Pedrycz 1996), classification or data mining (Kuncheva 
2000; Ishibuchi et al. 2004), among other engineering applications (Mendel 1995). 
 
Depending on the format of the rules, FRBSs can be roughly divided in several families, 
which differ in their ability to represent different types of information. The first includes 
linguistic models whose antecedents are linguistic labels and the system behavior can be 
described using a natural language. The consequent of the rule can be an output action 
or a class to be applied: 
 

1 1: If  is and ... and   is  then  is   i i n in iR X A X A Y B   
or 

1 1: If    is  and ... and   is  then   with   i i n in k ikR X A X A C w   
 
with 11  to  ,  to   ni M X X=  and Y  being the input and output variables for regression 
respectively, and kC  the output class associated to the rule for classification, with 

1 to   i inA A  and iB  being the involved antecedent and consequent labels, respectively, 
and ikw  being the certain factor associated to the class. These systems are usually called 
linguistic or Mamdani-type FRBSs (Mamdani 1974). 
 
The second category is composed of logical rules that have a fuzzy antecedent and 
functional consequent parts. They can be represented as: 
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( )1 1 1: If  is  and ... and  is   then    ,  ,    i i n in nR X A X A Y p X X= …  
 
with ( )p ⋅  being a polynomial function, usually a linear expression, 

0 1 1  ·    ·i i in nY p p X p X= + + … + . The can be viewed as a combination of several linear 
systems and are called TS-type fuzzy systems (Takagi and Sugeno 1985). 
 
Another category of fuzzy models are approximate or scatter partition-based FRBSs 
(Alcalá et al. 2001), which differ from linguistic ones because of their semantic-free 
rules. Each fuzzy rule presents its own semantic, i.e., the variables take different FSs as 
values (and not linguistic terms from a global term set). The fuzzy rule structure is then 
as follow: 
 

1 1
ˆ: If   is  and ... and  is  then    is      i i n in iR X Â X Â Y G   

with  to   ij inÂ Â  and ˆ
iG  being FSs. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Structure of a linguistic FRBS 
 

In linguistic FRBSs, the KB includes two components, a data base (DB) and a rule base 
(RB). The RB contains a set of IF-THEN fuzzy rules, which are joined by a rule 
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connective ("OR" operator). Therefore the same input can fire multiple rules 
concurrently. The DB includes the FSs associated with the linguistic terms of the RB. 
Each linguistic variable involved in the problem is associated to a fuzzy partition of its 
domain representing the FSs associated to each of its linguistic terms. The number of 
FSs in a fuzzy partition can be variable and is called granularity. The determination of 
this granularity and fuzzy partition is essential in fuzzy modeling.  
 
The inference engine of FRBSs acts in a different way depending of the kind of problem 
(classification or regression) and the kind of fuzzy rules. It always includes a 
fuzzification interface that serves as the input to the fuzzy reasoning process, an 
inference system that infers from the input to several resulting output (FS, class, …) and 
the defuzzification interface that converts the FSs obtained from the inference process 
into a crisp action in the case of regression problems, or provide the final class 
associated to the input pattern in the case of classification problems. 
 
In order to provide an overview of this type of systems, the generic structure of a 
linguistic FRBS is shown in Figure 1. 

 
2.2. Evolutionary Algorithms 
 
EAs (Eiben and Smith 2003) are optimization and general purpose search algorithms 
based on the evolution of a population of solutions, therefore being a part of EC (Foster 
2001). These types of models mimic the principles of biological natural evolution, such 
as natural selection and genetic inheritance. In particular, EAs are the computational 
reflection of the interplay between the creation of new genetic information and its 
evaluation and selection. A single individual of a population is affected by other 
individuals of the population (e.g., by food competition, predators, and mating), as well 
as by the environment (e.g., by food supply and climate). If the individual performs well 
in these conditions, then the likelihood of living longer and generate offspring will 
increase, thus passing its (perturbed) genetic information to those offspring. 
Additionally, non-deterministic nature of reproduction leads to permanent production of 
new genetic information and therefore the creation of different offspring. 
 
One of the main reasons for the success of this type of techniques is their ability to 
exploit the information accumulated about and initially unknown search space in order 
to bias subsequent searches into useful subspaces, i.e. their robustness. This is their key 
feature, especially in large, complex, and poorly understood search spaces, where 
classical search tools (enumerative, heuristic, and so on) are inappropriate, offering a 
valid approach to problems requiring efficient and effective search techniques. 
 
Although there are many possible variants of this basic structure, the fundamental 
underlying mechanism operates on a population of chromosomes or individuals, 
representing potential problem solutions encoded into suitable data structures. The 
evolution consists of three operations: evaluation of individual fitness, formation of a 
gene pool (intermediate population), and recombination through crossover and/or 
mutation, as it can be seen in Figure 2.  
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Figure 2. “Ingredients” of an evolutionary algorithm 
 
The way this procedure is carried out, depends on the family of algorithms that are 
being used. The most well known are genetic algorithms (GAs) (Goldberg 1989), 
evolution strategies (Schwefel 1995), evolutionary programming (Fogel 1995), genetic 
programming (Koza 1992, Poli and Langdon 2007), differential evolution (Price et al. 
2005), estimation of distributed algorithms (Larrañaga and Lozano 2001), and memetic 
algorithms (Moscato and Cotta 2003), which combine the evolutionary model with local 
search for improving the convergence.  
 
2.3. Neural Networks 
 
ANNs (Haykin 2009; Bishop 1995; Ripley 1996, Rojas 1996; Jain 1996) are one of the 
core components of CI. These systems, originally inspired by the functionality of 
biological neural networks, can learn complex functional relations by generalizing from 
a limited amount of training data. They can be used to build black-box models of 
nonlinear systems that require no detailed information about the structure; they are 
multivariable static and dynamic systems and can be trained by using input-output data 
observed on the system. 
 
They are typically composed of several interconnected processing units, or ‘neurons’ 
which can have a number of inputs and outputs. In mathematical terms, an ANN can be 
seen as a directed graph ( ), ,G N Aψ  where each node of the N  set implements a 
neuron model, A  denotes the connections (also called arcs or synapses) between the 
neurons, and ψ  represents the learning rule whereby neurons are able to adjust the 
strengths of their interconnections. The number and type of neurons and the set of 
possible interconnections between them define the architecture or topology of the 
neural network. 
 
In a nutshell, the working mechanism of this system is as follows: a neuron receives its 
inputs from an external source or from other neurons in the network, and it then 
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undertakes some processing on this input and sends the results as an output. In the 
simplest case, the neuron model, i.e. the underlying function of a neuron or activation 
function, is computed as a weighted sum of the incoming signals (inputs) transformed 
by a (typically nonlinear) static transfer function. 
 
Learning in ANN’s is typically accomplished in a supervised way by using examples to 
adjust the connection weights (Hush and Horne 1993). It is often formulated as the 
minimization of a loss function such as the entropy or the total mean square error 
between the actual output and the desired output summed over all available data. A 
gradient descent-based optimization algorithm such as BackPropagation (BP) 
(Rumelhart and McClelland 1986) can then be used to adjust connection weights in the 
ANN iteratively in order to minimize the error. The essence of a learning algorithm is 
the learning rule, i.e., a weight-updating rule which determines how connection weights 
are changed. 
 

  

 
 

Figure 3. Examples of three representations for ANNs. At the left side an MLP is 
depicted; at the center, we show a recurrent neural network; finally, at the right side we 

may observe a Self-Organizing Map. 
 

Out of this general idea, a great number of different models have been appearing in the 
literature over the last forty years. They differ in aspects like architecture, e.g. layered 
(feedforward), total interconnection, recurrent (feedback), learning approach, e.g. 
supervised, unsupervised, reinforcement, kind of neurons (and correspondingly, type of 
activation function). To name some of the most relevant ANNs that can be found in the 
specialized literature, we should remark: multilayered perceptrons (MLP); Radial Basis 
Function networks (RBF); Stochastic Machines, like Boltzmann Machines; Recurrent 
networks, like Erlang-networks; and Competitive Learning models, like Self-Organizing 
Maps and ARTMAP; a couple of examples of their representation are shown in Figure 
3. See some of the general references above for details. 
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Fuzzy Adaptive Learning 
Control Network 
(FALCON) 

: An approach that combines FL with Neural Networks. 

Fuzzy Logic (FL) : Is a form of many-valued logic that deals with 
reasoning that is approximate rather than fixed and exact, 
i.e. variables may have a truth value that ranges in 
degree between 0 and 1. 

Fuzzy Rule Based System 
(FRBS) 

: Model structure in the form of “IF-THEN” rules, 
whose antecedents and consequents are composed of FL 
statements. 

Fuzzy Sets (FSs) : They are a set whose elements have degrees of 
membership. 

Fuzzy Self-Organizing 
Map (FSOM) 

: Is a type of ANN that is trained using unsupervised 
learning to produce a low-dimensional (typically two-
dimensional), discretized representation of the input 
space of the training samples, called a map. It uses fuzzy 
logic for its inner working mechanism. 

Generalized Approximate 
Reasoning-based 
Intelligent Control 
(GARIC) 

: A methodology that integrates ANNs with Fuzzy 
Systems. 

Genetic Algorithm (GA) : Is a search heuristic that mimics the process of natural 
evolution. Therefore, they belong to the larger class of 
EAs, which generate solutions to optimization problems 
using techniques inspired by natural evolution, such as 
inheritance, mutation, selection, and crossover. 

Genetic Fuzzy System 
(GFS) 

: Are fuzzy systems using a genetic algorithm for 
determining the system parameters. 

Hybrid Fuzzy Inference 
System (HyFIS) 

: A hybrid approach between ANNs and FL.  

Multi-Objective 
Evolutionary Algorithm 
(MOEA) 

: Is an optimization search mechanism based on EAs but 
with the improvement of considering multiple 
conflicting objectives, instead of a single one.  

Multi-Objective 
Evolutionary Fuzzy 
System (MOEFS) 

: It is defined as hybridization between MOEAs and 
FRBSs  

Recurrent Neuro-Fuzzy 
Network (RNFN) 

: Is a class of a fuzzy neural network where connections 
between units form a directed cycle. 
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