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Summary 
 
In the material to follow, two design measures are chosen: degree of stability (as 
measured by phase margin) and steady state accuracy. It is observed that the sign of the 
phase margin is an unambiguous indicator of stability (assuming proper care is taken in 
calculating the sign of the phase margin) while the sign of gain margin is ambiguous for 
that purpose. Six compensators are analyzed, design rules are derived and design is 
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applied to a common problem. PI and lag compensators improve steady state accuracy 
(with a modest loss of stability). PD and lead compensators improved stability (but 
steady state accuracy is not as good as with PI and lag compensators). PID and lag-lead 
compensators improved both stability and steady state accuracy, as compared to the 
system having only the plant and unity feedback. 
 
1. Introduction 
 
Control system science is indebted to the work of pioneers such as Nyquist and Bode 
who were initially interested in creating regenerative feedback amplifiers in the 1930s 
and 1940s, largely for application in the communications industry. Nyquist's elegant use 
of complex variables and Bode's intuitive use of frequency response graphics formed 
the basis for design methods that remain in common use today. 
 
For the purposes of this section, a stable system is defined as one in which all closed-
loop poles (roots of the controlled characteristic polynomial) are in the open left-half 
plane. The natural response of such a system will tend toward zero as time increases and 
a bounded input will produce a bounded output. Conversely, an unstable system is 
defined as having at least one closed-loop pole in the open right half plane and/or 
repeated closed-loop poles along the imaginary (vertical) axis. Such a system possesses 
an unbounded natural response. A bounded non-zero input produces an unbounded 
output, unless all closed-loop right half plane poles are cancelled by equal closed-loop 
right half plane zeros. For purposes of this section, in that latter case, the system shall 
still be considered to be unstable. The term marginally stable is used here to describe the 
remaining type of system having simple imaginary (vertical) axis closed-loop poles with 
all other closed-loop poles being in the open left half plane. Such a system has a 
bounded natural response, which does not converge to zero as does a stable system. 
Some bounded inputs produce bounded outputs, while other bounded inputs (having a 
natural frequency located at a closed-loop imaginary axis pole) produce an unbounded 
output. 
 
If the system is stable, two commonly used measures of the degree of stability are gain 
margin and phase margin, which indicate the amount of magnitude and phase change, 
respectively, required to move the system to marginal stability from stability. These 
measures indicate the margin by which gain may be changed if the system dynamics are 
known or, alternatively, the amount by which the assumed system dynamics may be in 
error, if gain is not changed (or some combination of changes). While the sign of the dB 
value of gain margin may be positive or negative for stable or unstable minimum-phase 
or non-minimum phase systems, positive phase margin (if properly calculated as 
mentioned later) implies that a system is stable. Similarly, negative phase margin 
implies instability while zero-valued phase margin implies marginal stability, using the 
stability definitions just presented. We shall therefore use phase margin as a stability 
measure.  Steady state accuracy will also be considered. 
 
Six compensators are considered. PI and lag compensators improve steady state 
accuracy (possibly to the detriment of stability). PD and lead compensators improve 
stability (possibly to the detriment of steady state accuracy). PID and lag-lead 
compensators improve both stability and steady state accuracy. Design rules are 
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suggested and a common plant is used to compare and contrast the use of the six 
compensators.  
 
2. Gain and Phase Margins 
 
Figure 1a shows a typical control system whose degree of stability is to be evaluated. In 
Figure 1b, a gain K is added to the forward path, in an effort to measure the degree 
stability of the system. For convenience, when K=1 in Figure 1b, the system will be 
referred to as being nominal in that the original system of Figure 1a emerges. The 
transfer function including K is 
 
                     KG(s) 
T(s) =   ⎯⎯⎯⎯⎯⎯  (1) 
              1 + KG(s)H(s) 
 
If s is a closed-loop pole, then 
 
1+KG(s)H(s) = 0 
 
KG(s)H(s) = -1 = 1∠-180° 
 
There is thus a magnitude condition 
 
⏐KG(s)H(s)⏐ = 1 (2) 
 
and an angle condition 
 
∠ KG(s)H(s) = -180° (3) 

 
 

Figure 1: Control System Nomenclature (a) Nominal System (b)Gain Included to 
Obtain GM and PM 
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It is of interest to know how much adjustment of K from the nominal value of 1 is 
required to make the system marginally stable. There are at least two possibilities: the 
magnitude of K can change to a value called the gain margin (GM) while the phase does 
not change or the phase of K can change by the negative of an angle called the phase 
margin (PM), while the magnitude does not change. To find GM and PM, 
 
1. Adjust the system magnitude until the system becomes marginally stable by selecting 
K to be a positive real number with zero phase angle, that is, K=GM∠0°. 
 
2. Adjust the system phase until the system becomes marginally stable by selecting 
K=1∠-PM. 
 
2.1. Gain Margin 
 
Following 1, above, K is to be a positive real number called the gain margin (GM). In 
general, if K is to be adjusted until the system becomes marginally stable, then the 
denominator of (1) is zero for some value of s that is purely imaginary. Let that s be 
called jωPC. Then (3) can be solved to obtain ωPC 
 
∠ G(jωPC )H(jωPC ) = -180° (4) 
 
The frequency ωPC is called the phase crossover frequency. The GM follows from (2) 
with s= jωPC 
 
                                1 
K = GM = ⎯⎯⎯⎯⎯⎯⎯⎯ (5) 
                  ⏐G(jωPC )H(jωPC) ⏐ 
 
With K = GM, the system is marginally stable. Since the dB of some magnitude m is 
 
dB(m) = 20 log10(m) 
 
it follows that 
 
dB(GM)=-dB(⏐G(jωPC )H(jωPC) ⏐) 
 
2.2. Phase Margin 
 
Following 2, above, K is to have a unity magnitude and a phase equal to the negative of 
the phase margin (PM). Again, the denominator of (1) is zero for some value of s that is 
purely imaginary. Now, let that s be called jωGC. Then (2) can be solved to obtain ωGC, 
assuming the magnitude of K to be 1. 
 
⏐G(jωGC )H(jωGC)⏐ = 1 (6) 
 
The frequency ωGC is called the gain crossover frequency.  For that frequency, (3) can 
be solved to obtain PM, knowing that the phase of K is –PM 
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-PM + ∠ G(jωGC )H(jωGC ) = -180° 
 
PM = 180° + ∠ G(jωGC )H(jωGC ) (7) 
 
Ideally, a stable system should be designed with sufficient gain margin and phase 
margin, that any expected combination of gain change and uncertainty as to plant 
dynamics will not generate instability.  
 
Suppose the type of system stability (stable, marginally stable or unstable) is unknown. 
Can gain margin or phase margin be used to determine stability type (as well as degree 
of stability)? The next two examples illustrate the fact that the sign of dB(GM) is 
ambiguous in determining stability. What about using the sign of the phase margin? It is 
imperative that PM be calculated correctly. At low frequency, the phase of G(s)H(s) can 
be expressed as a negative angle. As frequency increases, that phase becomes 
progressively more negative or less negative, but is always expressed as a negative 
angle, until the frequency is reached where the magnitude ⏐G(jωGC )H(jωGC)⏐ equals 
one thus defining ωGC. Then, PM = 180° + ∠ G(jωGC )H(jωGC ). It has often been 
observed, using a complete Nyquist plot, that if G(s)H(s) is a rational polynomial ratio 
in s with no poles or zeros in the open right half plane, and there is only one value of 
ωGC then a positive value of PM occurs for a stable system, a negative value occurs for 
an unstable system, and a zero value occurs for a marginally stable system.  
 
It is my experience, based on many examples, that if phase is calculated as mentioned 
above, the sign of PM is also an unambiguous indicator of stability type for non-
minimum phase systems, when there is only one value of ωGC. While that is not a proof, 
the lack of a counter example is encouraging. Of course, whenever type of stability is in 
doubt, as when there are multiple values of ωGC with PM of differing sign, one can be 
more certain by examining the complete Nyquist plot or the root locus. In the following 
examples, the sign of the PM is an unambiguous indicator of stability type. 
 
2.3. Examples 
 
Consider two nominal systems. The first is 
 
                          10(s+10)2 
G1(s)H1(s) =   ⎯⎯⎯⎯⎯ 
                           s2(s+2) 
 
From the Bode plot of Figure 2, ωPC = 7.75 rad/sec, GM = 0.3 (-10.5 dB), ωGC = 14.6 
rad/sec, PM = 28.9°. Notice from the root locus of Figure 3 (with K=1) that the nominal 
system is stable having closed-loop poles at -2.96±j12.5 and -6.1. 
 
The second system is 
 
                             10 
G2(s)H2(s) = ⎯⎯⎯⎯⎯ 
                         s(s+2)2 
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From the Bode plot of Figure 4, ωPC = 2 rad/sec, GM = 1.6 (+4.1dB), ωGC = 1.56 
rad/sec, PM = 14.2°. From the root locus of Figure 5 (with K=1) the nominal system is 
stable having closed-loop poles at -0.17±j1.65 and -3.65. The first system is stable with 
a positive dB(GM) while the second system is stable with a negative dB(GM). Both 
stable systems have positive PM. 
 
Each system becomes unstable if the factor 10 changes by more than the limit imposed 
by the gain margin. The first system becomes unstable if the factor of 10 is multiplied 
0.2 (-14 dB) which is more negative in dB than the allowed value of GM = 0.3  (-10.5 
dB). The second system becomes unstable if the factor of 10 is multiplied 2, which is 
more than the allowed value of 1.6. The resulting unstable systems are  
 
                          2(s+10)2 
G1(s)H1(s) =    ⎯⎯⎯⎯  
                          s2(s+2) 
 
                          20 
G2(s)H2(s) =  ⎯⎯⎯  
                      s(s+2)2 
 
System 1 is now unstable with GM = 3.5 dB and PM = -7° while System 2 is unstable 
with GM =  -1.9dB and PM = -6.2°. The unstable systems both have negative values of 
PM, while the sign of dB(GM) is positive for one system and negative for the other. In 
the next section, it is noted that PM is also related to the damping ratio; hence, time 
response is also dependent on PM.  

 

 
 

Figure 2 Bode Plot of G1(s)H1(s) 
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Figure 3 Root Locus of G1(s)H1(s) 
 

 
 

Figure 4 Bode Plot of G2(s)H2(s) 
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Figure 5 Root locus of G2(s)H2(s) 
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