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Summary 
 
Stability plays an important role in the theory of dynamical systems and control. It 
characterizes the property of an unperturbed trajectory that all perturbed trajectories 
starting nearby stay nearby: small perturbations cause only small changes in the system 
behavior. The most important concept of stability has bee introduced by the Russian 
mathematician A. M. Lyapunov in 1892. Based on his famous work a general 
“Lyapunov theory” has been developed to investigate the stability behavior of general 
dynamical systems. Here, the basic ideas and results of this theory are presented. 
 
1. Introduction 
 
The property of stability is very important for the behavior of dynamical systems. 
Intuitively, stability can be understood as the requirement that small perturbations of the 
system cause only small changes of the system behavior. As perturbations external 
excitations or changes of the initial conditions can be considered as well. The 
development of stability concepts always tried to meet these intuitive ideas. But for a 
correct formulation of the stability problem exact definitions and criteria are required. 
While for linear time-invariant systems independent investigations were performed 
resulting in algebraic and geometric criteria, the stability analysis of nonlinear 
dynamical systems is still based on the famous work of the Russian mathematician A. 
M. Lyapunov (1857-1918) who presented a book on the general problem of the stability 
of motion in 1892. Lyapunov’s stability theory shows the complexity of the stability 
problem requiring a very precise discussion of the problem. 
 
The following stability analysis is based on a state space model of nonlinear dynamical 
systems 
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( ) ( ( ), )t t t=x a x�  (1) 
 
or 
 

( ) ( ( ), ) ( ( ), ) ( )t t t t t t= +x a x B x u� , (2) 
 

( ) ( ( ), ) ( ( ), ) ( )t t t t t t= +y c x D x u . (3) 
 
For the free system (1) an uncontrolled nonlinear system or a closed-loop controlled 
system is considered. For system (2, 3) the input-output behavior is considered where u  
can be interpreted as external disturbances or as control inputs which have to be 
designed suitably; the output y represents usually the measurements. 
 
For linear systems we can speak about the stability of the system in general, but for 
nonlinear systems we have to distinguish more precisely if the stability of an 
equilibrium point, a trajectory, a limit cycle or an arbitrary attractor is considered. If a 
particular solution p( ) ( )t t=x x  is assumed, if necessary with a suitable input function 

p( ) ( )t t=u u , satisfying (1) or (2, 3) respectively, then the equations can be reformulated 
with respect to the deviations from p ( )tx , p ( )tu : 
 

p( ) ( ) ( )t t t= +x x x , p( ) ( ) ( )t t t= +u u u . (4) 
 
This leads to  
 

( ) ( ( ), )t t t=x a x� , ( , )t =a 0 0  (5) 
 
with 
 

p p( ( ), ) ( ( ) ( ), ) ( ( ), )t t t t t t t= + −a x a x x a x  (6) 
 
or,  
 

( , )t =a 0 0 ,         (7) 
 

( ) ( ( ), ) ( ( ), ) ( )t t t t t t= +y c x D x u , ( , )t =c 0 0  (8) 
 
with 
 

p p p( ( ), ) ( ( ), ) ( , ) ( , ) ( )t t t t t t t⎡ ⎤= + + −⎣ ⎦a x a x B x x B x u , (9) 
 

p( ( ), ) ( , )t t t= +B x B x x , (10) 
 

p p p p( ( ), ) ( , ) ( , ) ( , ) ( , ) ( )pt t t t t t t⎡ ⎤= + − + + −⎣ ⎦c x c x x c x D x x D x u , (11) 
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p( ( ), ) ( , )t t t= +D x D x x , (12) 

p( ) ( ) ( )t t t= −y y y , p p p p( ) ( , ) ( , ) ( )t t t t= +y c x D x u . (13) 
 
By the transformation (4) the general stability investigation for the particular solution 

p ( )tx  is attributed to the stability analysis of the equilibrium point =x 0  of the system 
(5) of (7, 8). But it has to be accepted that a time-invariant system (1) or (2, 3) is 
transformed in a time-variant system (5) or (7, 8) for time-varying trajectories p ( )tx . 
Only special cases such as constant operation points p p0( )t =x x  lead to time-invariant 
systems (5) or (7, 8) if the original systems are time invariant, too. 
 
In the following the descriptions (5) or (7, 8) are assumed. By that agreement the bars 
on the vectors in (5) and (7, 8) are dropped without being confused. 
 
2. Linearization: Stability in the First Approximation 
 
In many applications a feedback control is designed to stabilize an equilibrium point (or a 
particular motion). In case of additional disturbances only small deviations ( )tx�  from the 
equilibrium point are allowed. As long as the nonlinearity functions are continuously 
differentiable in a neighborhood of the desired equilibrium point, then the system behavior 
may be approximated by the linearized equations 
 

( ) ( ) ( )t t t=x A x�� �  (14) 
 
or 
 

( ) ( ) ( ) ( ) ( )t t t t t= +x A x B u�� � , (15) 
 

( ) ( ) ( ) ( ) ( )t t t t t= +y C x D u� � . (16) 
 
The system matrices are designed as 
 

T

( , ): t

=

∂
=

∂ x 0

a xA
x

, : ( , )t=B B 0 , T

( , ): t

=

∂
=

∂ x 0

c xC
x

, : ( , )t=D D 0  (17) 

 
where A, C are Jacobian matrices evaluated at =x 0 . 
 
Very often Eqs. (15, 16) are the starting point of the stability analysis or the control 
design. This established procedure is justified by the method of first approximation. 
 
Theorem 1: If the linearized system (14) is exponentially stable (cf. (20)) and 
 

( , ) ( )
lim 0

t t
→

−
=

x 0

a x A x
x

 (18) 

holds, then the equilibrium point =x 0  of the nonlinear system (5) is exponentially 
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stable as well. 
 
Theorem 2: If the linearized system (15) is stabilized exponentially by a linear static or 
dynamic output feedback of (16) and 
 

( , ) ( )
lim 0

t t
→

−
=

x 0

c x C x
x

 (19) 

 
holds additionally to (18), then the equilibrium point =x 0  of the nonlinear system (7, 
8) is exponentially stabilized by the same feedback. 
 
The requirements (18, 19) mean that the deviations between the nonlinear and the 
linearized system are small of higher than first order. Additionally, we have to be aware 
of the effect that stability of the linearized system is a global property while for the 
nonlinear system the stability of the equilibrium point =x 0  is a local property in its 
neighborhood. Exponential stability is only guaranteed in a domain of attraction which 
may be small. A control design according to Theorem 2 should also make this domain 
as large as possible. 
 
The notion of exponential stability of =x 0  means the requirement that any trajectory 

( )tx  for arbitrary initial conditions 0(0) =x x  in a small but full neighborhood of =x 0  
satisfies the estimate 
 

0( ) e tt βα −≤x x  (20) 
 
for certain positive constants ,α β . For time-invariant system matrices ( )t =A A  the 
system (14) is exponentially stable if and only if the conditions 
 
Re ( ) 0iλ <A , 1, ,i n= …  (21) 
 
hold where ( )iλ A  are the eigenvalues of A. The test for (21) consists either in the 
calculation of the eigenvalues iλ  or in the application of one of the stability criteria for 
linear time-invariant systems.  
 
For linear time-variant systems the proof of exponential stability is much more difficult. 
Sometimes there is a speculation with respect to the “frozen” eigenvalues ( )i tλ , 

1, ,i n= … , 
 

[ ]det ( ) ( ) 0i t tλ − =I A , (22) 
 
such that a condition Re ( ) 0i tλ δ≤ − <  would guarantee exponential stability. But this 
speculation is definitely wrong which is shown by a simple counter-example. 
 
Example 1: Consider the linear periodic system 
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( )1 1 2
3 1 3cos3 1 3sin
2 2 2

x t x t x⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

� , ( )2 1 2
3 3 11 sin 3 cos3
2 2 2

x t x t x⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

�  (23) 

 

The frozen eigenvalues are constant: 2
1
2iλ λ= = − . Nevertheless the system (23) is 

exponentially unstable because of the solution 
 

2
1 10 20

3 3( ) cos sin
2 2

t tx t e t x e t x−= ⋅ + ⋅ , 2
2 10 20

3 3( ) sin cos
2 2

t tx t e t x e t x−= − ⋅ + ⋅ . (24) 

 
The stability analysis of time-variant systems is difficult in general. In the special case 
of linear periodic systems Floquet’s theory can be applied, which offers a systematic 
numerical approach for the stability check at least. 
 
- 
- 
- 
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